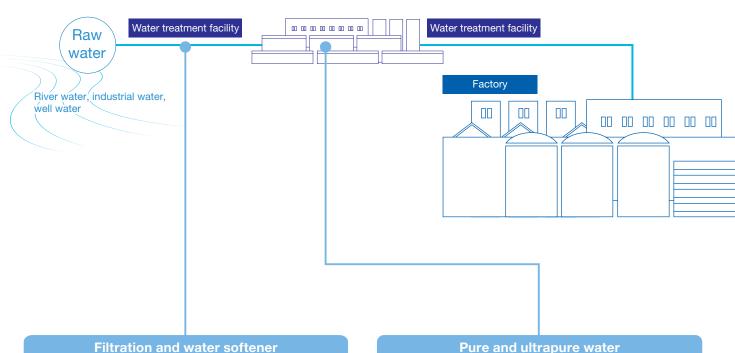
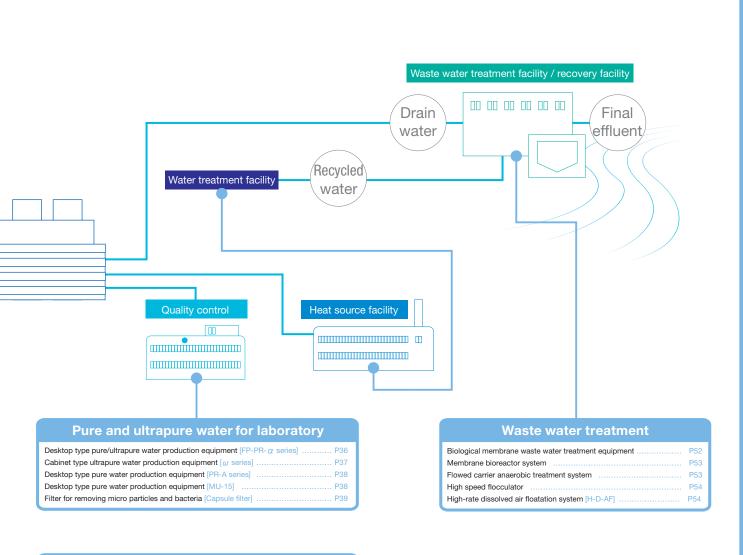


"ORGANO" water is used in many places of our life. ORGANO purifies water daily in an ecological way considering of life and global environment.

"Water" is required in various scenes such as food and beverage processing, industrial factory, and medical and chemical research. Each location needs different levels of safety, purity, or hardness.


ORGANO will contribute to enriching the lives of people by "water" technology and environmentally friendly technology.

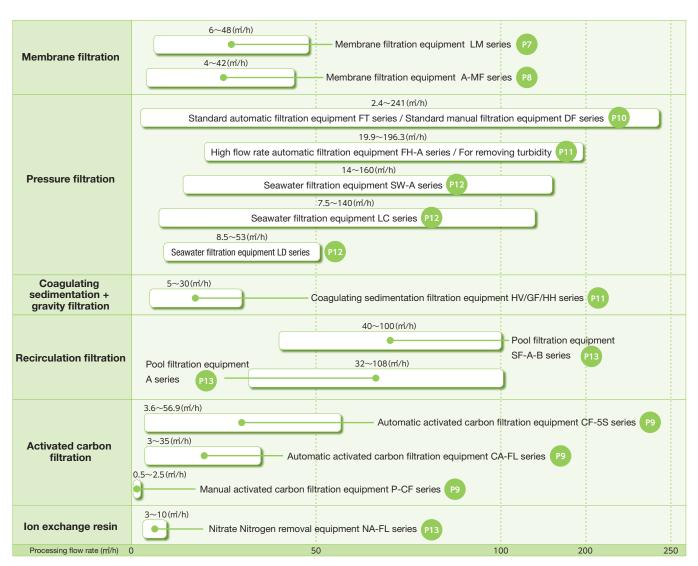

"One stop solution" for the demands from various industries

To meet various requests from customers, ORGANO provides "one stop solution" such as filtering for manufacturing process, pure/ultrapure water for washing process or quality control, drainage, cooling water for heating power source, and boiler water.

Membrane filtration [LM series] Membrane filtration [A-MF series] Automatic activated carbon filtration equipment [CF-5S series] Automatic activated carbon filtration equipment [CA-FL series] Seawater filtration equipment [LC-SW series] P12 Seawater filtration equipment [LD-SW series] P12 UNIT OPTION Laser scattering type highly sensitive turbidity meter [OT series]P7

Pure and ultrapure water	
Double pass RO unit [RO series]	20
EDI unit [EY-XP/HF series] P20	20
Final polishing unit [FP series] P21	21
EDI pure water production equipment [SD-XP/HF series] P22	2
EDI pure water production equipment [SD-SG series] P23	23
Cabinet type pure water production equipment [PR-SG/FC series]	4
Cabinet type pure water production equipment [PR-SG series]	25
Synthetic polymer-based composite membrane RO system [RO-FC series] P26	6
Synthetic polymer-based composite membrane RO system [RO-C series]	6
Synthetic polymer-based composite membrane RO system [DR-A series]	7
Heat exchange unit [HE-S series] P27	7
Membrane decarbonation equipment [MD-A series] P27	7
Cartridge pure water production equipment [G series]	8
Automatic pure water production system [AM-C/AM series] P30	80
Manual pure water production system [HM series] P31	31
2 beds type pure water production system for high purity [MG-S series]	32
High performance pure water production system [SG-X series]	32
Unit type ultrapure water production system [UC series] P33	3
Cabinet type ultrapure water production equipment [FP series]	4
Related products	
IER cartridge P29	9
Polishing cartridge [PF-P]	
Desktop type cartridge purifier [G-1 HB]	
Raw water supply unit [SP-MB series] P31	
H-20 P31	
UNIT OPTION	
Water quality indicator [RG-12/RG-8A/MH-9] P29	9

Electrolyzed water	
Alkali electrolyzed water production equipment.	40
Slightly acid electrolyzed water production equipment	40


Filter
List of filter cartridges
Drawing of cartridge filters P46
Hydrophilic asymmetric polyestersulfone membrane filter [HP type]
Low elution type all polypropylene filter [EU type]
[PF-R series]P48
Pure water filter [PF cartridge] P48
Activated carbon filter [PF-RC type]
Stainless steel filter housing [SH series] P49
Stainless steel high flow and large scale filter housing [SK series]
Sanitary stainless steel housing [SH-S series] P50
High functioning polypropylene filter housing [PH-A series]
Multi purpose plastic filter housing [PF-Ⅲ type]
Multi purpose plastic filter housing [PF-VI type]

Other equipment	
Japanese distilled spirit (Shochu) purification equipment	
Multi-stacked tray type aerator P42	
Organic chlorine compounds removal equipment P42	
Experimental ion exchange resin column P43	
Homogenizer for bacteria test P43	
Related equipment	
Ion exchange resin/Synthetic adsorbent P43	

Various models and precise analysis

ORGANO provides various models of filtration equipment which produces suitable water for all treatment purposes such as food industry, dyeing industry, paper mill industry, electronics industry where Iron, Manganese and colors are critical. To select most suitable equipment, precise analysis of raw water is essential. In ORGANO's analysis center, our experienced and skillful staff is engaged in advanced analysis using cutting-edge technology.

|--|

																			_ do			ridot do
Model	Memb	rane fil	tration	Activate	d carbon		Stand	ard filt	ration		- 1	High flov	v rate fi	iltratio	n	Coagulating sedimentation	Seaw	ater filt	ration	(Others	
Filtration object	LM- DW	LM- MS	A-MF	CF-5S	CA P-CF	BF	FM	FP	PM	CF	FH-P	FH-PM	FH-M	FH-C	FH-F	HV/GF/HH	SW-A	LC	LD	А	SF-A-B	NA
Iron	•	•	•					•	•		•	•				•			•			
Manganese		•					•		•			•	•		0	•			•			
Suspended solid/ Turbidity	•	•	•	0	0	•	0	0	0	0	0	0	0		0	•	•	•	•	•	•	
Organic matter				•	•					•				•		0						
Odor/Taste/ Residual chlorine				•	•					•				•		0						
Discoloration by humin material	0	0	0	0	0	0				0				0	•	0						
Volatile organic compound				0	0					0				0								
Trihalomethane				0	0					0				0								
Nitrate nitrogen/ Nitrite nitrogen																						•

●Excellent ○Good ▲Please contact us

Membrane filtration equipment

LM series

General

Ideal filtration for drink water from well water and industrial water

Application

Feature

Stable quality of treated water

Turbidity 0.1 (NTU) is stably achieved as suspended solids are physically removed through UF.

Save chemical usage

Flocculants and pH adjusting are not required which are necessary for general sand filtration system. Easy maintenance without troublesome chemical refills or controls.

Save space

Compact footprint comparing with general sand filtration system by eliminating large size backwash water.

Good usability

Wide color touch panel(8.4inch and with CF memory card). Usability and visibility improved from conventional models.

Display of touch panel

Operating condition is easily recognized as the color of membrane module changes upon operating situations.

Historical trend graph shows easily understandable operating condition (6 month operation data)

Specification

84l - l	Processing	Installa	weight weight Powel n				Operating	Overlike of breaked weeker			
Model	flow rate (m²/h)	W	D	Н	weight (kg)	weight (kg)	supply(V)	pressure (MPa)	Quality of treated water		
LM-6000-DW	6	1500	1162	2058	390	490					
LM-012K-DW	12	1815	1228	2056	480	660					
LM-024K-DW	24	2320	1224	2250	680	980			Turbidity 0.1 (NTU)		
LM-036K-DW	36	3100	1283	2250	880	1330					
LM-048K-DW	48	3790	1392	2300	1110	1700					
LM-6000-MS-06	6	3020	1162		785	995	AC100	0.5			
LM-6000-MS-12**	0	3335	1300	2479	875	1165					
LM-012K-MS-12	12	3485	1300		1075	1445			Turbidity below 0.1(NTU) Iron: below 0.3mgFe/L		
LM-012K-MS-24*	12	3990	1260	2485	1275	1765			Manganese: below 0.05mgMn/L		
LM-024K-MS-24	24	4640	1317	2403	1765	2465			U.USITIR/MIT/L		
LM-024K-MS-36*	24	5420	131/		1965	2815					

Upper limit of TOC of raw water depends on process water mount. It is 2mgC/L if the process water amount is low while it is 0.5mgC/L if it is high (**Marked models support high TOC. TOC 1.5-2mgC/L can be processed with max process water mount.).

Indoor Outdoor

Condition for raw water

Temperature	5~30℃
Pressure	0.3MPa
Turbidity	Below max 5 (NTU) for constant use (below max 20 for urgent case %applicable to industrial treated water)
Iron	Below 1.0mgFe/L
Manganese	Below 0.05mg/Mn/L
тос	Below 2mgC/L

 $\% Spec \ of \ removal \ of \ highly \ concentrated \ iron \ and \ Manganese \ (LM-MS \ series) \ lron: 2.0 mg/Fe/L, \ Manganese: 1.0 mgMn/Local \ mathematical \ mathemat$

Option

Laser scattering type highly sensitive turbidity meter OT series

- Safety purpose for food and beverage industry
- Turbidity control (Below 0.1 NTU) for filtered water output
- Membrane rupture detecting sensor
- High sensitivity / Simple maintenance / Low running cost

Highly sensitive turbidity meter OT-201N

The processing flow rate depends on the quality of raw water.
 The installation space does not include space for auxiliary equipment (raw water pump, backwash pump and chemical injection device etc.) and maintenance.

Membrane filtration equipment

A-MF series

General

Electronics Automotive/Machinery Food/Beverage

Medical/Cosmetic Chemical/Material Hospital Building/Hotel etc

Advanced process of surface and industrial water, recycle of fine washing water and treated water for food manufacturing, pre-treatment for pure water production, RO and recycle of waste water

Feature

Stable quality of treated water

Assure the quality irrespective of the fluctuation of raw water quality.

Save chemical usage

Reduce chemical consumption without the usage of flocculation agent.

Ideal membrane for chemical resistance

PVDF membrane excels in physical strength and chemical resistance. A-MF series are equipped with highly crystallized PVDF membrane specialized in durability, and enables highly frequent and loaded washing (air scrubbing + NaClO backwash) and contributes to running cost reduction.

Specification

Processing Model flow rate		Installa	tion spa	ce (mm)	Product	Operating	Power	Max power	Operating
Wiodei	flow rate (m²/h)	w	D	Н	weight (kg)	weight (kg)	supply (V)	supply capacity (VA)	pressure (MPa)
A-MF-01	4~7	1450		1950	400	470			
A-MF-02	8~14	1900	600		520	650			
A-MF-03	12~21	2200			600	800	AC200 ×Single phase	500	0.1~0.3
A-MF-04	16~28	2800		2000	800	1050			
A-MF-05	20~35	3000	1000		900 12	1250			
A-MF-06	24~42	3000			1000	1400			

Indoor

Option

Laser scattering type highly sensitive turbidity meter OT series

- Safety purpose for food and beverage industry
- Turbidity control (Below 0.1 NTU) for filtered water output
- Membrane rupture detecting sensor
- High sensitivity / Simple maintenance / Low running cost

Highly sensitive turbidity meter OT-201N

[•] The processing flow rate depends on the quality of raw water.
• The installation space does not include space for auxiliary equipment (raw water pump, backwash pump and chemical injection device etc.) and maintenance.

Activated carbon filtration equipment

Application

General

Feature

Specification

Automotive/Machinery Food/Beverage Medical/Cosmetic Chemical/Material Hospital Building/Hotel etc

Removal of organic substances and residual chlorine from city water, removal of odor and discoloration from drink water, pre-treatment for pure water filtration equipment and RO equipment

Automatic activated carbon filtration equipment

CF-5S series

Stable bacteria management with heat sterilization function

Excellent durability

Prevent the growth of bacteria Equipped with heat sterilization function with steam.

Safe material

Can select suitable activated carbon to various purposes.

SUS316 is used for filtration body while SUS304 is used for main piping.

Model	Processi	ng flow ra	ite (m³/h)	Installa	tion spa	ce (mm)	Product Operating weight		Operating pressure	Backwash flow rate	Filtration tower	
Model	LV20	SV10	SV20	w	D	Н	(kg)	(kg)	(MPa)	(m³/h)	(mm)	
CF-5S-03	8.8	3.6	7.2	980	1440	2800	340	1380		8.8	φ750×H1565	
CF-5S-04	14.2	5.7	11.4	1050	1650	2850	500	2540	0.5(40°C) 0.3(90°C)		14.2	φ950×H1870
CF-5S-05	22.6	9.1	18.2	1340	1930	3180	730	4020		22.6	φ1200×H1870	
CF-5S-06	40.2	16.1	32.2	1730	2420	3470	1080	7040		40.2	φ1600×H1870	
CF-5S-07	56.9	22.8	45.6	2000	2660	3580	1480	10980		56.9	φ1904×H1870	

Automatic activated carbon filtration equipment

CA-FL series

General

Feature

Automatic backwash method

Auto start of backwash/wash by setting interval or time of backwash.

*Line up with regenerative start mode by signal input from outside. *Manual mode of backwash can be also selected.

Easy to handle by adopting single automatic valve

Equipped with automatic backwash function

- Equipped with digital timer.
- Automatic alternating operating function achieves 24-hour continuous water output.

$\overline{}$			
0	100	10000	
Sn	ecit	ICATION	١.

Model	Processing flow rate	Installation space (mm)			Product weight	Operating weight	Power	Operating	Backwash flow rate	Filtration tower dimension	
wodei	(m³/h)	W	D	Н	(kg)	(kg)	supply (V)	pressure (MPa)	(m³/h)	(mm)	
CA-3000-FL	3	595	470	1689	60	180			1.8	φ349×H1398	
CA-6000-FL	6	785	638	1640	100	330	AC100 0.1			3.8	φ491×H1370
CA-010K-FL	10	886	685	1926	110	470		0.15~0.40	4.8	φ555×H1721	
CA-015K-FL	15	1027	778	2239	160	720	ACTOO	0.13 -0.40	5.9	φ611×H1918	
CA-025K-FL	25	1478	1581	2500	420	1110			9.6	φ781×H1895	
CA-035K-FL	35	1624	1584	2500	460	1750			13.6	φ932×H1920	

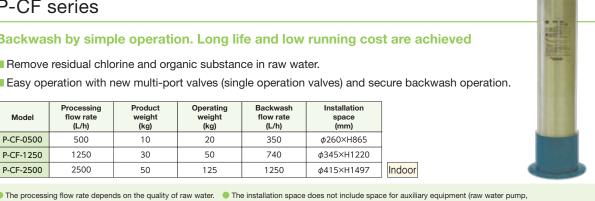
Indoor

Manual activated carbon filtration equipment

P-CF series

Feature

Specification


Backwash by simple operation. Long life and low running cost are achieved

Remove residual chlorine and organic substance in raw water.

backwash pump and chemical injection device etc.) and maintenance

Easy operation with new multi-port valves (single operation valves) and secure backwash operation.

Model	Processing flow rate (L/h)	Product weight (kg)	Operating weight (kg)	Backwash flow rate (L/h)	Installation space (mm)
P-CF-0500	500	10	20	350	φ260×H865
P-CF-1250	1250	30	50	740	φ345×H1220
P-CF-2500	2500	50	125	1250	φ415×H1497

Indoor

Standard automatic filtration equipment

FT-0A0/0E0 series

Standard manual filtration equipment

DF-0M0 series

Standard product with many experiences in filtration of well water and industrial water

Application

General

Electronics Automotive/Machinery Food/Beverage

Medical/Cosmetic Chemical/Material Hospital Building/Hotel etc

Removal of Fe/Mn/turbidity/chlorine from well water, industrial water and river water

Feature

Wide selection of models

Suitable equipment can be selected upon water quality and processing purpose.

Save space

Compact design to reduce installation space.

Short lead time and low cost

The established mass production systems achieve short lead time and low cost.

Save operation work

By using automatic valves for major parts, operating work of equipment control is reduced (FT-0A0/0E0 series). Specs of automatic valves are selected upon customer request.

%0A0 type: air operation valve, 0E0 type: electric operated valve

Specification

Model	Pro	cessing (m	g flow r /h)	ate	Installation space (mm)			Product weight	0	peratin (i	ng weig t)	ht	Operating pressure	Air backwash flow rate (m/min)	Backw	rash flo (m²/h)		Filtration tower dimension
	BF	FM	FP PM	CF	W	D	Н	(t)	BF	FM	FP PM	CF	(MPa)	BF	BF FM	FP PM	CF	(mm)
FT-0500 DF-0500	2.4	3.9	2.9	3.9	900	1100	2330	0.17	0.65	0.59	0.63	0.53		0.16	5.9	4.9	3.9	φ500×1545
FT-0600 DF-0600	3.4	5.7	4.2	5.7	900	1200	2370	0.20	0.91	0.81	0.87	0.70		0.24	8.5	7.0	5.7	φ600×1545
FT-0750 DF-0750	5.3	8.8	6.6	8.8	1200	1300	2455	0.32	1.81	1.69	1.73	1.52		0.37	13.3	11.0	8.8	φ750×1565
FT-0950 DF-0950	8.5	21.2	14.2	14.2	1300	1500	2745	0.46	2.54	2.34	2.49	2.08		0.59	21.2	17.7	14.2	φ950×1870
FT-1200 DF-1200	13.6	33.9	22.6	22.6	1700	1800	2880	0.59	5.14	4.74	5.00	4.35	0.3	0.94	33.9	28.3	22.6	φ1200×1870
FT-1600 DF-1600	24.1	60.3	40.2	40.2	1800	2300	3145	0.90	9.12	8.32	8.74	7.62	0.3	1.67	60.3	50.3	40.2	φ1600×1870
FT-1900 DF-1900	34	84.9	56.6	56.6	2200	2300	3430	1.25	11.79	10.72	11.32	9.76		2.36	84.9	70.8	56.6	φ1900×1870
FT-2400 DF-2400	54.2	136	90.4	90.4	2700	3200	3625	2.86	17.10	15.42	16.39	13.88		3.77	136	113	90.4	φ2400×1884
FT-2800 DF-2800	73.8	185	123	123	3100	3600	3810	3.68	25.29	23.03	24.35	20.94		5.13	185	154	123	φ2800×1884
FT-3200 DF-3200	96.5	241	161	161	3500	4200	4160	5.25	34.54	31.71	33.44	28.96		6.7	241	201	161	φ3200×1902

Indoor Outdoor

Automatic filtration equipment

Application

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic Chemical/Material Hospital Building/Hotel

Removal of Fe/Mn/turbidity/chlorine from well water, industrial water and river water

High flow rate automatic filtration equipment

FH-A series

General

Feature

Ideal for high flow processing with space saving design

- The flow rate processing is 1.6-2 times higher than conventional pressure filtration equipment.
- Footprint 30% smaller than conventional pressure filtration equipment with similar process flow rate. Efficient utilization of the spaces.
- The backwash water mount is cut by 30-50% comparing to conventional pressure filtration equipment. Reduce running cost.
- Can select the most suitable model upon water quality/purposes.

Specification

FH-A series

	Processing flow rate (m²/h) Installation space (mn		ce (mm)	Produ	ıct wei	ght(t)	Opera	ting we	eight (t)	Operating	g Backwash flow rate(m/h			Filtration tower			
Model	FH-P FH-PM	FH-M FH-C	FH-F	w	D	н	FH-C	FH-M FH-F		EU C	FH-M		pressure		FH-M		dimension
13A	53	.1	19.9	1500	1900	3900	3	3.5	3.9	5.8	6.1	6.2		39.8	46.5	39.8	φ1300×2438
17A	90	.8	34	1800	2300	4000	5.1	5.9	6.6	10.1	10.5	10.7	0.3	68.1	79.4	68.1	φ1700×2438
21A	138	3.4	52	2100	2800	4300	8.1	9.3	10.3	15.8	16.5	16.6	0.3	103.8	121.2	103.8	φ2100×2438
25A	196	5.3	73.6	2500	3200	4700	12.5	14.2	14.7	22	24.9	25.7		147.3	171.8	147.3	φ2500×2438

For FHC, the values are based on the spec of chlorine

Indoor Outdoor

For removing turbidity

Model	Processing flow rate	Installa	tion spa	ce(mm)	Product weight	Operating	Operating	Backwash flow rate	Filtration tower dimension
Model	(m/h)	W	D	Н	(t)	(t)	(MPa)	(m³/h)	(mm)
13A	39.9	2800	2850	4900	4.7	7.6		46.6	φ1300×2860
17A	68.1	3050	3250	4950	7.9	13.0	0.3	79.5	φ1700×2860
21A	103.8	3450	3800	5150	12.5	20.5	0.3	121.1	φ2100×2860
25A	147.3	4050	4400	5250	18.2	30.0		171.9	φ2500×2860

Indoor Outdoor

Coagulating sedimentation filtration equipment

HV/GF/HH series

General

Ideal for processing highly concentrated turbidity, Iron, and Manganese

- Feature
- Ideal filtration for processing highly concentrated turbidity/iron/Manganese. Can select most suitable equipment depending on water quality or purpose.
 - Vertical type (HV series) for limited space and horizontal type (HH series) for limited height are recommended.
- As each part is unitized, easy to transport by truck and install in factory.
- Automatic operation with reduction of troublesome maintenance work.

HV/GF series Specification

			lating s	edimer	ntation H	V series	G	ravity filtr	ation GI	series		
Model		Installat	tion space	ce (mm)	Product	Operating weight	Installation	space (mm)	Product	Operating	Backwash flow rate	
	(m/h)	W	W D		(t)	(t)	Diameter	Н	(t)	(t)	(m/h)	
5	5	11	20		1.3	6.7	1030		0.55	4.5	25	
10	10	15	80	4200	1.9	12.3	1460	2700	0.8	8.8	50	
20	20	φ26	φ2650		3.0	24.5	2060	2700	1.25	17.5	100	
30	30	φ31	φ3150		,		2520		1.65	25.3	150	

HH series (integrated model of coagulating sedimentation and gravity filtration)

Model	Processing flow rate	Installa	tion spac				Backwash flow rate
	(m³/h)	W	D	Н	(t)	(t)	(m²/h)
5	5	4100	2700	2850	2.3	13	25
10	10	5700	3600	2030	2.95	21	50
20	20	8200	4300	2550	4.05	41	100

Indoor Outdoor

Indoor Outdoor

The processing flow rate depends on the quality of raw water.
The installation space does not include space for auxiliary equipment (raw water pump, backwash pump and chemical injection device etc.) and maintenance.

General

Feature

Seawater filtration equipment

SW-A series

Long time operation with excellent corrosion resistance

Effective utilization of whole filters

Adopting 2 layers filtration method enables the high utilization of whole filters and also long time operation with less frequent backwash.

Prevent mad balls

Using surface cleaning system to prevent (%) mad balls (a lump of filter material).

※1 Filters form a lump by plankton in sea water tied with filters.

Excellent corrosion resistance

Filtration main body is made of copper plate, salt-tolerant coating, and FRP lining material. Internal parts are made of FRP.

Easy installation

Compact piping in front of body. Can scramble from right side or left side for inlets and outlets.

Specification

Model	Processing flow rate	Installa	tion spa	ce (mm)	Product weight	Operating	Operating	Backwash flow rate	Surface washing flow rate	Filtration tower dimension
Model	(m³/h)	W	D	Н	(t)	weight (t)	pressure (MPa)	(m²/h)	(m²/h)	(mm)
SW-A-0950	14	1900	1700	3400	2.1	3.9		21	3.6	φ950×H2300
SW-A-1200	23	1950	1850	3500	3.4	6.1		34	5.7	φ1200×H2300
SW-A-1600	40	2300	2300	3700	6	11.3		60	10	φ1600×H2300
SW-A-1900	57	2570	2750	3850	8.6	16.3	0.3	85	14.2	φ1900×H2300
SW-A-2400	90	3800	3400	4150	14.3	27.1		136	22.6	φ2400×H2300
SW-A-2800	123	3400	3800	4500	19.8	37.8		184	31	φ2800×H2300
SW-A-3200	160	4000	4500	4700	27	51.4		242	40.2	φ3200×H2300

Indoor Outdoor

Seawater filtration equipment

LC-SW series

General Feature

FRP automatic filtration equipment with excellent corrosion and weather resistance

Excellent corrosion resistance —

Using FRP material for main body, it is highly corrosion resistant and can be used long time stably.

Excellent weather resistance —

Deforms and discolorations can be prevented even for outdoor usage. It can be constantly used in a clean condition.

Product Operating Operating Backwach Filtration

Light weight

FRP main body en lightweight to tra into factory.

enable	S
nspor	t
•	
tower	
ion	
)	
1800	
1800	
11800	
11800	
11800	≫With
	air (

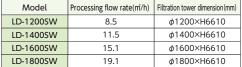
h electric valves, compressed air (compressors etc.) is not necessary

Indoor Outdoor

Specification

Model	Processing	Installa	tion spac	ce (mm)	weight	weight	Operating	flow rate	dimension
Model	flow rate(m/h)	W	D	Н	(t)	(t)	pressure (MPa)	(m²/h)	(mm)
LC-7500-SW	7.5	1200	1450	2600	0.15	1.4		11.5	φ700×H1800
LC-012K-SW	12	1350	1700	2750	0.4	2.4		19	φ900×H1800
LC-022K-SW	22	1400	2050	2950	0.65	4.3		34	φ1200×H1800
LC-040K-SW	40	1800	2500	3100	1.1	7.8	0.29	60	φ1600×H1800
LC-056K-SW	56	2100	2900	3300	1.6	11.3	0.23	85	φ1900×H1800
LC-075K-SW	75	2900	3400	3400	2.4	15.8		110	φ2200×H1800
LC-098K-SW	98	3250	3800	3700	3.3	21.3		150	φ2500×H1800
LC-140K-SW	-SW 140		4200	3850	5.1	31.8		212	φ3000×H1800
							•		

Seawater filtration equipment


LD-SW series

General

Built-in backwash system to save spaces

■ With the built-in backwash system, tanks and pumps for backwash are not needed, which can save space.

Using FRP material for main body, this equipment has high corrosion resistance and is usable stably for long time. Even for outdoor specs, deforms and discolorations can be prevented to be used cleanly.

Model	Processing flow rate(m³/h)	Filtration tower dimension (mm)
LD-2200-SW	28.5	φ2200×H6930
LD-2600-SW	39.8	φ2600×H6930
LD-3000-SW	53	φ3000×H6930

Indoor Outdoor

Specification

Feature

Pool filtration equipment

Application

Public sector | Building/Hotel etc

Circulation filtration for poor water treatment

Pool filtration equipment

A series

General

Feature

Specification

Easy control and maintenance for pool filtration

- Easy control and maintenance without emission of drain water by adopting wound type cartridge made of polypropylene.

	inside layer. Filtration accuracy is approximately 30-50um.													
Model	Model Processing flow rate(m/h) Installation space(mm)					ce(mm)	Product	Operating weight	Power supply	Power consumption	Operating pressure	Filtration tower dimension		
Model	LV4	SV5	SV6	W	D	Н	weight (kg)	(kg)	(V) · · ·	(VA)	(MPa)	(mm)		
A40-50/60	32	40	48	1700	1700	1900	350	850	AC200	3.7		φ650×H1000		
A60-50/60	48	60	72	2000	2000	1900	500	1200	×	5.5	0.3	φ750×H1000		
A90-50/60	72	90	108	2200	2200	2000	600	1700	Three phase	7.5		φ950×H1050		

Indoor Outdoor

Pool filtration equipment

SF-A-B series

General

Feature

Specification

Related products

Repeatedly	usable	filtration	equipment	for	pool
------------	--------	------------	-----------	-----	------

■ Using sands for filter material, it evacuates Easy operation with single filtered turbidity by backwash operation and automatic valve. enables repeated usage.

Model	Processing flow rate	Installation space(mm)			Product weight	Operating weight		Power consumption		Filtration tower dimension
Model	(m²/h)	W	D	Н	(t)	(t)	(V)	(VA)	(MPa)	(mm)
SF-A-405B/406B	40	1880	1930	2200	0.90	4.60	AC200	6	-	φ1200×H1220
SF-A-705B/706B	70	2340	2415	2390	1.38	7.80	×	8		φ1600×H1220
SF-A-1005B/1006B	100	2760	2755	2550	2.02	12.10	Three phase	11		φ1900×H1220

Indoor Outdoor

A series / SF-A-B series

Portable residual chlorine meter OR-54

Easy detection of residual chlorine in tap water or pool water.

Water quality control for city water for factory/building or pool

- No reagents are required. No running costs.
- Equipped with digital display of the values and user-friendly feature such as throw-in measurement.

Nitrate nitrogen removal equipment

NA-FL series

General

Specification

Remove nitrate (nitrous) nitrogen harmful to human

Feature

Automatically regenerating method — Automatic regeneration or cleaning can be done by setting

*Regenerating operation can start by signal input from outside.

regenerating interval or time.

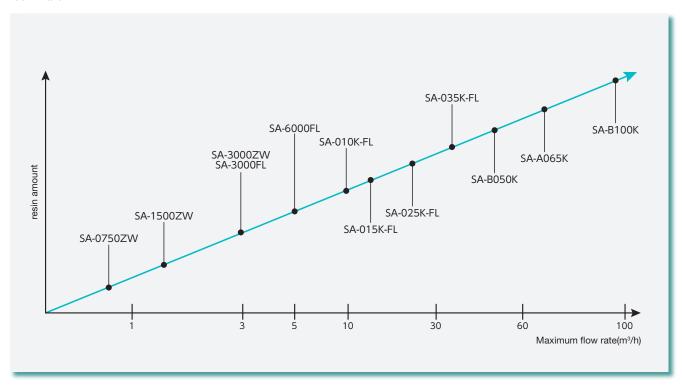
Easy operation by adopting single automatic valve

Equipped with digital timer. In addition, automatic alternating operation function achieves 24 hour continuous water output.

*Manual regenerating and cleaning can be also selected.

Model	Processing flow rate	Installation space(mm)			on space(mm) Product Operating Power Operating weight weight supply pressure		Operating	Resin amount	Regenerant usage	
Model	(m/h)	W	D	Н	(kg)	(kg)	(V)	(MPa)	(L)	(kg/cycle)
NA-3000-FL	3	1510	649	1689	100	420		0.15~0.40	50	12.7~14.0
NA-6000-FL	6	1950	776	1640	150	710	AC100		100	25.4~27.9
NA-010K-FL	10	2070	891	1926	190	1030			175	44.4~48.84

Indoor


The processing flow rate depends on the quality of raw water. 💮 The Installation space does not include space for auxiliary equipment (raw water pump, backwash pump and chemical injection device etc.) and maintenance.

Water softner

Hard water and Soft water

Even colorless and transparent tap or well water contains many kinds of substances which cannot be seen by our eyes. The typical substances are Ca and Mg called "hard components."

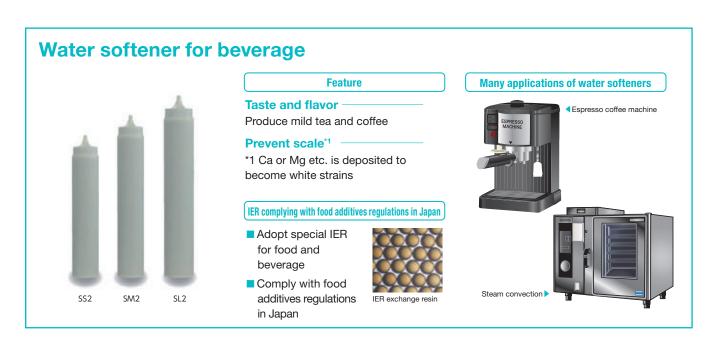
The water containing a lot of hard components is called "hard water" while the water containing little of them is called "soft water."

.		Amount of collected soft water (m³/cycle)					
Resin amount (L)	Model	Raw water hardness 45mg/L	Raw water hardness 90mg/L				
12.5	SA-0750ZW	10	5				
25	SA-1500ZW	20	10				
50	SA-3000ZW	40	20				
50	SA-3000FL	40	20				
100	SA-6000FL	80	40				
175	SA-010K-FL	140	70				
250	SA-015K-FL	200	100				
425	SA-025K-FL	340	170				
600	SA-035K-FL	480	240				
1000	SA-B050K	812	406				
1400	SA-A065K	1120	560				
2000	SA-B100K	1624	812				

 $[\]blacksquare$ *If the raw water is above 90mg/ ℓ hardness, it may not be sufficiently softened. Please contact us

What is Soft water or Hard water?

The origin of the word "hard water" has been said in many ways. Some people say that it is the water to make beans hard when you use it to boil beans or it is the water making silk hard when being used to do the silk scouring. Both support the fact that hard water contains a component to make things hard. In other words, soft water makes beans or silk soft if it is used for boiling or silk scouring.


We call components making things hard as hard components (examples: Ca and Mg).

There is no clear definitions for soft water or hard water in terms of containing amounts of hard components in water.

But generally, it is considered to be soft water which contains less than $30mg/\ell$ hardness.

ORGANO's water softener controls the water less than $1mg/\ell$. The hardness limitation for drink water is considered less than $300mg/\ell$ which is justified for tap water by law. It means tap water is not necessarily soft water.

Application	If hard water is used
Tea	Tea tastes, flavors or pigment components are not fully extracted due to hard components. Color components are also affected and cause discoloration.
Juice	Sweet taste is not fully abstracted and the color changes unstably. During storage, a lot of sediments and turbidness are generated.
Boiled bean	Harder water makes beans harder. if the water is more than 900mg/ ℓ hardness, beans cannot be made softer no matter how long they are boiled.
Wheat flour or starch	Hard components connecting to wheat flour or starch make those qualities worse. As a result, the foods made of the worsen flours get hard and do not have enough stickiness.
Sugar-containing processed food	Sugar is easily caramelized, and even crystallized after they are included in final products.
Transparent water	The substances melting in water comes out with solids when water turns into ice. Those substances are mainly hard components. Hard components above $70 \text{mg/}\ell$ (especially Fe $0.2 \text{mg/}\ell$) are difficult to produce transparent ice.
Noodle	Hard water causes insufficient stretch of noodles and also the difficulties of complete boiling of them for short time.
Soap or washing	Hard components connected to soap become dregs hard to melt in water (called metal soap). If the water cannot contain enough substances of soap by generated metal soap, less bubbles are produced and reduce the cleaning capability.
Boiler	If the water containing hard components is boiled, the substances react with each other causing sediments which generate scale by sticking and hardening in a boiler. As scale has low heat-conductivity, more fuels are required (lower efficiency). Furthermore, scale causes direct danger by extra heat or congestion.

Automatic water softener

SA-ZW series

General

Application

Feature

Easy maintenance and ECO design

Automotive/Machinery Chemical/Material Hospital Building/Hotel etc

Water supply for boiler, cleaning water, water for humidifier

Regeneration start-up depending on customer convenience —

■ Timer regeneration mode

Regeneration starts up on time set in timer. It is the suitable mode when there are the certain periods when soft water is not in use.

■ Meter regeneration mode*¹

It starts regeneration at the time when the soft water collection reaches the selected amount.

■ Meter and scheduled regeneration mode*1

After the selected amount of soft water is collected, regeneration starts at the scheduled time.

ECO design - Cut the waste of regenerants and drainage

■ Integrated flow meter is adopted (meter regeneration mode)*1

It measures the level of collected soft water and can start regeneration when soft water output reaches the selected amounts. It automatically reduces the frequency of regeneration when the usage of soft water is low, which achieves the cut of the wasteful regenerant consumption.

A slide-type cover makes regenerant input easy *1

Opening the slide-type cover located in upside of body, you can see the input port for regenerant. Easy procedure with low risk of spilled regenerant.

Indoor

%1 SA-0750/1500ZW only

Specification

Model	Processing	Dime	ension (mm)	Power	Power	Operating	Resin	Regenerant
Model	flow rate (L/h)	W	D	Н	supply (V)	consumption (W)	pressure (MPa)	amount (L)	usage (kg/cycle)
SA-0750ZW	750	560	325	650		7	0.15~0.5	12.5	1.5
SA-1500ZW	1500	560	325	1110	AC100			25	3
SA-3000ZW	3000	900	500	1460				50	6.1

The processing flow rate depends on the quality of raw water.
The dimensions do not include the space for maintenance.

Automatic water softener

SA-A-K/SA-B-K series

General

Remarkably easy operation with automatic regeneration function

Application

Automotive/Machinery Chemical/Material etc Water supply for boiler, cleaning water, water for humidifier

Feature

- The integrated flow meter on the inlet side can output signal, which achieves the scheduled quantity operation.
- Suitable for drink water with epoxy coating on the inner surface of resin column and regenerant solution tank and the polyethylene lining piping.
- With the 5-cycle system, long time use of resin and the reduction of regenerant waste can be
- Push-button start for automatic regeneration and manual operation are possible.

Specification

Model	Processing flow rate	Installa			Power consumption	Operating pressure	Resin amount	Regenerant				
Model	(m²/h)	W	D	Н	(kg)	(kg)			(MPa)	(L)	usage (kg/cycle)	
SA-B-050K	50	3100	2100	3350	2440	6040				1000	100	
SA-A-065K	65	3300	2300	4100	3300	6600	AC100	125	0.15 ~ 0.3	1400	140	
SA-B-100K	100	3800	2600	3950	6440	11530				2000	200	

Related products

SA series/SA-A series/AW-S series Regenerant for water softener

ORGANO provides ideal regenerant for water softener. The large size of particle diameter 9mm of granulated regenerant is easily dissolved in solution without forming

balls even when it is soaked in water long time. High purity of the regenerant contributes to stable operation of your water softener.

20Kg box (5kg x4 package)

Easy handling by small packages. Recommended for the case of low frequency of regeneration.

25Kg package

ORGANO also provide a large sized package for high frequency of regeneration.

Indoor Outdoor

The processing flow rate depends on the quality of raw water.The Installation space does not include space for maintenance.

Automatic water softener

SA-FL series

General

Easy operation with automatic regeneration function

Application

Electronics Automotive/Machinery Chemical/Material Hospital Building/Hotel etc Water supply for boiler, cleaning water, water for humidifier

Automatically regenerating method

Automatic regeneration or cleaning can be done by setting regenerating interval or time.

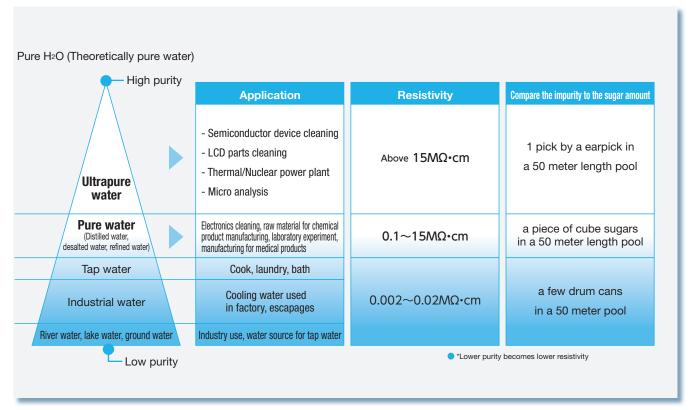
*Regenerating operation can start by signal input from outside.

 $\mbox{\%}\mbox{Manual}$ regenerating and cleaning can be also selected.

Easy operation by adopting single automatic valve

Equipped with digital timer. In addition, automatic alternating operation function achieves 24 hour continuous water output.

Specification


Model	Processing flow rate	Installa	tion spa	ce (mm)	Product weight	Operating weight	Power	Operating	Resin amount	Regenerant	
Model	(m/h)	W	D	Н	(kg)	(kg)	supply (V)	pressure (MPa)	(L)	usage (kg/cycle)	
SA-3000-FL	3	1350	520	1689	90	320		_	50	5.1~6.6	
SA-6000-FL	6	1700	657	1640	120	590			100	10.2~13.2	
SA-010K-FL	10	2020	776	1926	170	880	AC100	0.15~0.40	175	17.8~23.1	
SA-015K-FL	15	2390	1004	2239	260	1400	ACTUU	0.15.0.40	250	25.4~33.0	
SA-025K-FL	25	2950	1581	2500	520	1950			425	43.1~56.1	
SA-035K-FL	35	3080	1584	2500	560	2610			600	60.0~79.2	Ir

The processing flow rate depends on the quality of raw water.
 The Installation space does not include space for maintenance.

Pure Water and Ultrapure Water

· ·	Ultrapure or pure	e water	Model	Processing flow rate	Page
		Dauble nees	RD series	~4.6㎡/h	P20
	RO	Double pass	DR-A series	~6m³/h	P27
	110	Single pass	RO-FC series	~5.2㎡/h	P26
		Siligie pass	RO-C series	~14.4m³/h	P26
		MB (Auto)	AM series	~36m³/h	P30
	Ion exchange	MB (Manual)	HM series	~6m³/h	P31
Pure	resin (Regeneration)	2B	MG-S series	~10m³/h	P32
water		2B3T or 3B4T	SG-X series	~110㎡/h	P32
	lon exchange resin	(non regeneration)	G series	~4m³/h	P28
	Electrodeion	ization (EDI)	EY-XP/HF series	~4m³/h	P20/21
	RO + DI (non i	rogonoration)	PR-SG/FC series	~2.6m³/h	P24
	110 + 01 (11011)	egeneration)	PR-SG series	~0.5㎡/h	P25
	RO +	EDI	SD-XP/HF series	~3㎡/h	P22
	RO +	בטו	SD-SG series	~0.2㎡/h	P23
	Ultrapure water	Raw water: Tap water	UC series	~2.6m³/h	P33
Ultrapure water	Sub system unit	Raw water:	FP series	~5㎡/h	P21
	oub system unit	Pure water	FP series	~0.5㎡/h	P34
Others	Heat transfe	r equipment	HE-S series	~6m³/h	P27
Others	Decarbonatio	n equipment	MD-A series	~6㎡/h	P27

What is Pure water or Ultrapure water?

Various ways of pure water purification

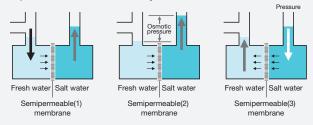
Ion exchange

This is a purification way using an ion exchange resin(IER). Water contains a cation (Na $^+$, Ca $^{2+}$, etc.) and an anion(Cl $^-$, SO $_4^{2-}$, etc.).

When a cation contacts a cation exchange resin or an anion contacts an anion exchange resin, those ions tie with an IER and are locked in a IER. Then H^+ or OH^- is generated, which reacts each other resulting in H_2O . This is how IER method removes ions from water.

Regeneration or cleaning process is necessary for recycling IER

The number of ion exchange groups in IER is limited. Once all ion exchange groups are processed, further reactions of ion exchange does not proceed. So, to make IER useable again, regeneration or cleaning process is required.

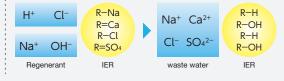

Reverse Osmosis (RO)

This is a water purification method by Reverse Osmosis (RO). If 2 kinds of liquids (like fresh water and salt water) with different concentration are put in and separated across semi-permeable membranes (only solvent can go through), fresh water of dilute liquids moves to the side of concentrated salt water(1).

This is called "osmosis phenomenon". The migration of water continues till it reaches a certain water pressure level, which is called osmotic pressure(2).

On the other hand, by giving more pressure than osmotic pressure on the concentrated liquid side, the water moves from the concentrated side (salt water) to the dilute side (fresh water). This is called reverse osmosis (3).

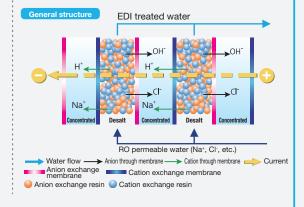
RO method usually puts 1MPa pressure on the concentrated side so that the impurity (collodial material or ion etc.) are separated from water effectively.


3 ways of IER regeneration

1. Non regeneration method (Cleaning)

ORGANO is able to perform cleaning processes for used-up IER so that those IER can be used again.

2. Regenerant method (by chemical "HCL and NaOH")


This is a method to use chemicals suitable to cation or anion exchange resin. When an used-up cation exchange resin contacts with such acid as HCl, a cation (Na*, etc) tieing with exchange groups is to be replaced by a hydrogen ion. In the same way, when an used-up anion exchange resin contacts with such alkali as caustic soda, an anion (chloride ion, etc.) tieing with exchange groups is to be replaced by a hidroxide ion.

3. Electrodeionization

EDI(Electrodeionization) is the technology how IER catches an ion in water and then those ions are collected in concentration compartment and drained by electric filed. EDI makes it possible that IER is constantly able to exchange an ion.

ORGANO's specially developed and advanced EDI achieves the longtime functionality of stable Silica removal and high purity.

ORGANO's pure/ultrapure water production system

Application

Feature

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic Chemical/Material etc

Pre-treatment desalting for pure water production, precision apparatus cleaning, electronics products cleaning, cosmetic manufacturing cleaning, process-use water for medicine manufacturing, beverage / food manufacturing, air conditioning usage, laboratory purpose etc

Double pass RO unit

RD series

Compact design (save space)

Compactly unitization of RO membrane (double pass), RO pump,

and controller. 30% (volume level) size of ORGANO's conventional equipment. Easy transfer of the machine even in the spaces with narrow passages.

Reduce running cost

As RD series have the double pass RO structure, if IER pure water purification system is used in the post process, long life of IER is achieved.

Excellent energy saving

RO pump equipped with inverter achieves its energy saving.

EDI (Electrodeionization) unit

EY-XP/HF series

Compactly unitization

with narrow passages.

Compact sized unit of ORGANO's newly developed EDI, DC power source device, and controller. 30% (volume level) size of ORGANO's conventional equipment. Easy transfer of the machine in the spaces

Highly safe and ECO-friendly operation with no chemical usage

No required acid or alkali chemicals (which are necessary for regeneration-type pure water production equipment). No need to save hazardous chemicals or related maintenance work. ECO-friendly with no drainage of acid or alkali.

(XP) Extremely high purity of pure water

ORGANO's newly developed EDI-XP makes possible to provide highly pure water stably, which is suitable for long-hour operation.

Flow

Specification

Model	Processing flow rate	Dime	ension (mm)	Product weight	Operating weight	Power supply	Power capacity	
Model	(m/h)	W	D	Н	(kg)*	(kg)*	(V)	(kVA)	
RD-1100	1.1	900	1100		570 (640)	650 (720)		17	
RD-2300	2.3	850		1000	850 (950)	1000(1100)	AC200		
RD-3500	3.5	1100	1750	1900	1010(1120)	1230(1340)	Three	20	
RD-4600	4.6	1100			1130(1240)	1400(1510)	priase		

% The values in "()" are the weight equipped with a cabinet.

Indoor


Model	Processing flow rate	Dimension (mm)			
Wodet	(m/h)	W	D	Н	
EY-1000-XP/HF	1		800	1900	
EY-2000-XP/HF	2	600	1100		
EY-3000-XP/HF	3	600			
FY-4000-XP/HF	4				

Quality of treated water (EY-XP)						
Resistivity	Above 10MΩ•cm					
Silica	Below 20μg SiO ₂ /L					

Quality of treated water(EY-HF)

Conductivity Below 1µS/cm

Option

The processing flow rate and the quality of treated water depend on the quality of raw water.

The dimensions do not include the space for maintenance.

Feature

System designed for customer request

Easy control and manipulation with each unit (EY/ FP) control integrated in RD series' control panel (Examples: RD+EY / RD+EY+FP.

* Single use is also possible).

Easy control of daily operation

Equipped with large sized 8.4 inch TFT color LCD touch panel. Easy understanding of operation condition and easy daily control. The measured data can be abstracted by USB in the front side of touch panel so that the operation data can be easily stored.

Good design of appearance

Give a good impression of the equipment to auditors coming to factory and contribute to improving the facility assessment. Cabinet type (option) prevents non-official persons to touch accidentally inside the equipment and can be operated safely.

(XP) Excellent removal function of SiO₂

ORGANO's newly developed EDI-XP stack is able to control SiO₂

concentration at sub ppb level.

(HF) Reduce running cost

With ORGANO's developed EDI-HF, the simpler system is realized without decarbonation treatment or softening treatment. No required regenerant for water softener system can contribute to the reduction of running cost.

Final polishing unit

FP series

High energy saving

A pump for pure water equipped with inverter is able to reduce energy waste. Contribute to energy

saving.

Energy and Water saving

No drain water by using dead end-typed UF module. No required cost of the drain water treatment contributes to reduction of running cost.

Compact design (space saving) -

30% space cut over conventional equipment.

Easy transfer of machine even in the spaces with narrow passages.

	Product weight (kg)*	Operating weight (kg)*	Power supply (V)	Power capacity (kVA)
	300(360)	320(380)		2
	420 (490)	440 (510)	AC200×	3
Ī	500(580)	540 (620)	Single phase	-
Ī	540(610)	580(650)		5

 $\ensuremath{\%}$ The values in "()" are the weight equipped with a cabinet.

Indoor

Model	Processing flow rate	Dime	ension (mm)	Product weight	Operating weight	Power	Power
Model	(m²/h)	W	D	Н	(kg)*	(kg)*	supply (V)	capacity (kVA)
FP-1000UF	1	1000			320(370)	380(430)		
FP-1000MF	'	1000			320(370)	390 (440)		3.1
FP-2000UF	2	1550			400 (470)	490 (560)		
FP-2000MF		1330	700	1900	410 (480)	510(580)	AC200×	
FP-3000UF	3	1600		1900	420 (490)	560 (630)	Three phase	5
FP-3000MF	3	1000			430 (500)	580 (650)	priasc	n
FP-5000UF	5	2200	1		520 (620)	710(810)		6.5
FP-5000MF		2200			530 (630)	740 (840)		0.5

Qualit	y of treated water(FP-MF)	Qualit	ty of treated water(FP-UF)
Resistivity	Above 17.5MΩ•cm	Resistivity	Above 17.5MΩ•cm
Micro particles	Below 50units/mL(0.2μm)	Micro particles	Below 10units/mL(0.1μm)
Viable bacteria	Below 0.1units/mL	Viable bacteria	Below 0.1units/mL

 \frak{W} The values in "()" are the weight equipped with a cabinet.

Indoor

Electrodeionization pure water production equipment

SD-XP/HF series

General

Non-chemical operation, energy saving, support for high hardness degree water

Application Electronics Automotive/Machinery Food/Beverage

Medical/Cosmetic Chemical/Material at-

Precision apparatus cleaning, metal plate cleaning, electronics product cleaning, cosmetic manufacturing, water for medicine manufacturing, air conditioning humidifier, chemical experiment or cleaning for analysis device, beverage/food manufacturing, other processing purposes etc.

Feature

Non-chemical operation

No acid or alkali chemicals are required. Also, no need to possess hazardous chemicals or refill such chemicals. It is Eco friendly equipment as there is no need for neutralization without the emission of acid or alkali chemicals

Energy saving

With ORGANO's newly developed EDI, the simpler system without decabonation treatment or water softening treatment is realized. RO pump equipped with inverter can save energy excellently.

For high degree of hardness water (ease the conditions of raw water)

ORGANO's developed EDI stack can ease the conditions for raw water input. Cutting water softening process contributes to the reduction of running cost.

Easy control of daily operation

Equipped with large sized 8.4 inch TFT color LCD touch panel. Easy understanding of operation condition and easy daily control. The measured data can be abstracted by USB in the front side of touch panel so that the operation data can be easily stored.

Stably highly pure water

With double pass RO system and ORGANO's newly developed EDI-XP, the equipment is able to reach high purity of pure water (SiO₂ concentration is at sub ppb level). Ideal for long-hour operation*1.

Cabinet type prevents non-official persons to touch accidentally inside the equipment and can be operated safely.

%1 for the case of SD-X series

Specification

Flow

84-4-1	Processing flow rate	Dim	ension ((mm)	Product weight	Operating weight	D	Power	
Model	(m²/h at 25℃)	W	D	Н	(t)	(t)	Power supply (V)	capacity (kVA)	
SD-0500XP	0.5	650	915	1675	Approx.0.35	Approx.0.41		4.3	
SD-1000XP	1				Approx.0.95	Approx.1.5		15	
SD-2000XP	2		1400		Approx.1.1	Approx.1.7	AC200-220	20	
SD-1000HF	1	1950	1400	1850	Approx.0.95	Approx.1.5	×Three phase	15	
SD-2000HF	2				Approx.1.1	Approx.1.7		15	
SD-3000HF	3		1500		Approx.1.3	Approx.1.9		25	Indoor

Electrodeionization pure water production equipment

SD-SG series

General

The latest ORGANO-own EDI realizes the reduction of maintenance work

Application

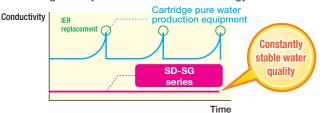
Medical/Cosmetic Chemical/Material Hospital Quality control/Laboratory **Electronics** Automotive/Machinery Biochemistry analyzer, weatherometer, heater, humidifier, cleaning for various purposes, raw water for ultra pure water production, analysis/reagent adjusting water

SD-0040SG/0080SG

SD-0200SG

Feature

No need to replace IER cartridges*


Conventional IER needs to be replaced once it cannot exchange ion anymore.

As SD-SG has the latest EDI which enables IER to maintain the capability of ion exchange, the replacement of the ion exchange resin cartridge is not necessary.

Stable water supports high-accuracy analysis

In conventional IER, the water quality is lowered when it is close to the time of IER replacement.

SD-SG is able to achieve constantly the stable water quality for long time by ORGANO's latest technology of EDI.

User-friendly design

- ·Roundish design with no edges in consideration of safety.
- ·Easy understanding of operation display

Large sized color display

*Need to replace CP cartridge

Flow

Specification

Model	Processing flow rate	Dim	nension (n	nm)	Operating	Power	Power	Pure water	Quality of	
	(L/h at25℃)	W	D	Н	weight(kg)	supply (V)	capacity(VA)	tank (L)	treated water	
SD-0040-SG	40	400	562	1500	Approx.110		600	20		
SD-0080-SG	80	450	804	1480	Approx.175	AC100±10% (50/60Hz)	1500	60	Above 10MQ•cm	
SD-0200-SG	200	600	951	1500	Approx.280	,	1500	100	1011122 0	Indoor

The processing flow rate and the quality of treated water depend on the quality of raw water.
 The dimensions do not include the space for maintenance.
 Pre treatment equipment may be required depending on the quality of raw water.

Cabinet type pure water production equipment

PR-SG/FC series

General

The latest pure water production equipment with compact design and one unitization of pretreatment, RO membrane and IER cartridge

Application

Precision apparatus cleaning, electronics parts cleaning, cosmetic manufacturing, process-use water for medical manufacturing, water for various manufacturing and processing, etc.

PR-1300 (Cabinet is optional)

Feature

PR-SG series

*Cabinet standard

- Equipped with line-switching function (automatically) between RO permeable water and treated water. Initial automatic washing enables the supply of constant level of water quality.
- Improve the replacement method for cartridge purifier. One touch replacement for cartridge can be done. By 1 push button, automatic operation is enabled for easier manipulation.

PR-FC series

- ORGANO in-house automatic flow rate control system enables easy operation. Also, RO element blockage problems by wrong operation are prevented.
- By dispersing agents, it can process water of high degree of hardness. Automatic flow rate control enables constantly high recycle rate and the reduction of the drain water waste.
- RO pump equipped with inverter can save wasteful energy consumption by automatic control.

*Cabinet is optional

Specification

Flow

Model	Processing flow rate	Dime	ension (sion (mm) Product Operating Power supply weight		Power supply		
Wiodei	(L/h at 10°C)	w	D	Н	(kg)	(kg)	(V)	
PR-0600-SG	600	642	993	1554	Approx.300	Approx.360	AC200×Three phase 50Hz/60Hz	
PR-1300-FC	1300	1350	900	1883	Approx.450~570	Approx.550~700	AC200×Three phase	
PR-2600-FC	2600	1700	'00 1025 1985 App		Approx.650~850	Approx.800~1000	50Hz/60Hz Universal	Indoor

Related products

Scale preventive for RO membrane

It has highly preventive effects for Silica and Calcium Carbonate scale and improves water recycling efficiency for RO membrane. 8kg Box (2kg x 4bottles)

Easy handling by small packed bottles (2kg).

- The processing flow rate and the quality of treated water depend on the quality of raw water. 🌘 The dimensions do not include the space for maintenance.
- Pre treatment equipment may be required depending on the quality of raw water.

Cabinet type pure water production equipment

PR-SG series

General

ORGANO's definitive model as a pioneer of cabinet type pure water production equipment

Application

Biochemistry analyzer, weatherometer, heater, humidifier, water for various manufacturing purposes, cleaning for various purposes, raw water for ultra pure water production, analysis/reagent adjusting water

Feature

User-friendly design

- Roundish design with no edges in consideration of safety
- Easy understanding of operation display

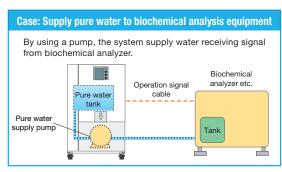
Cover for water collecting to prevent damages

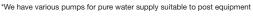
PR-0040SG/0100SG

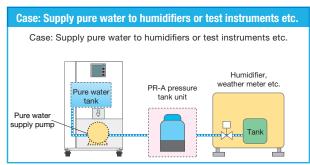
PR-0250SG/0500SG

Simplified procedure of exchanging IER cartridge -

Adopting an one-touch connector realizes the easy exchanging work.


(A conventional way of attaching/detaching a cap is not required)


Reliably stable operation


Stable flow amount even at low temperature by the latest Ultra-low pressure RO membrane

Flow

Specification

Model	Processing flow rate	Dim	ension ((mm)	Operating weight	Power supply	Power consumption	Pure water tank	Quality of		
Wiodei			D	Н	(kg)	(V)	(VA)	(L)	treated water		
PR-0040-SG	40(0.7L/min)	350	639	1142	98		450				
PR-0100-SG	100(1.7L/min)	330	639	1142	100	A C 1 0 0 1 1 0 0 /	500	20	Below 1μS/cm		
PR-0250-SG	250(4.2L/min)	520	908	1400	220	AC100±10%	900	100			
PR-0500-SG	500(8.3L/min)] 520	300	1400	250		1300	100			

The processing flow rate and the quality of treated water depend on the quality of raw water.

Pre treatment equipment may be required depending on the quality of raw water.

Synthetic polymer-based composite membrane RO system

RO-FC

General

The latest model of RO equipment with automatic flow rate control

Application

Electronics Automotive/Machinery Food/Beverage Chemical/Material **Medical/Cosmetic**

Pre-treatment desalting for pure water production, various cleaning/process purposes, air conditioning usage, experimental/laboratory purpose etc

Feature

- With ORGANO in-house "automatic flow rate control system", it is easily operated and RO element blockage can be prevented due to wrong operation.
- Equipped with 4.3 inch color touch panel. Easy understanding of operation condition and easy daily control. Can save operation data abstracted by USB.
- By Dispersing agent, it can process water of high degree of hardness. Automatic flow rate control can constantly maintain the high rate of recycle and reduce the waste of drain water.
- RO pump equipped with inverter can save wasteful energy consumption by automatic control.

Indoor

Specification

Model	Processing flow rate	Dime	ension	(mm)	Product weight	Operating weight	Power supply
Model	(L/h at10°C)	W	D	Н	(kg)	(kg)	(V) · · · ,
RO-1300-FC	1300	550	780		Approx.270	Approx.300	AC200
RO-2600-FC	2600	660	1040	1750	Approx.360	Approx.420	×
RO-3900-FC	3900	900	1010	1/50	Approx.440	Approx.560	Three phase 50Hz/60Hz
RO-5200-FC	5200	970	1000		Approx.480	Approx.600	Universal

Synthetic polymer-based composite membrane RO system

RO-C

General

Capable of supporting a variety of applications

Application

Electronics Automotive/Machinery Food/Beverage

Pre-treatment desalting for pure water production, various cleaning/process purposes, air conditioning usage, experimental/laboratory purpose etc

Feature

- High flow rate model. Improve flow rate per element.
- 3-side maintenance design enables the system to be installed to the close location to the wall.

Specification

Model	Processing flow rate	Dimension (mm)			Product weight	Operating weight	Power supply	Power capa	city (kVA)	
Model	(m/h at25℃)	W	D	Н	(kg)	(kg)	(V),	(50Hz)	(60Hz)	
RO-C-1200	1.2				250	310		2.0		
RO-C-2400	2.4	1740	770	1480	290	400		3.8	5.0	
RO-C-3600	3.6				340	490	AC200	5.0		
RO-C-4800	4.8]	800	1800	400	600	×	5.5	6.9	
RO-C-7200	7.2	2750	670	1550	470	730	Three phase	9.4	0.9	
RO-C-108H	10.8	3760	010	1590	560	920		13.8	13.8	
RO-C-144H	14.4	3760	810	1800	660	1140		13.0	18.8	

The processing flow rate and the quality of treated water depend on the quality of raw water.
 The Installation space does not include space for maintenance.
 Pre treatment equipment may be required depending on the quality of raw water.

Synthetic polymer-based composite membrane RO system

DR-A

General

Application

Ideal double pass RO unit for highly pure RO water

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic Quality control/Laboratory Chemical/Material Pre-treatment desalting for pure water production, various cleaning/process purposes, air conditioning usage,

Indoor

Feature

Flow

Specification

- The water flow passes through double-pass of RO, which can produce more highly desalinated water.
- Significantly longer life for the cartridge purifier (optional) put in the post treatment.

Water softener

Model	Processing flow rate (m²/h at25°C)	Dime	ension	(mm)	Product weight (kg)	Operating weight (kg)	Power supply (V)	Power capacity (kVA)
DR-A-6000	6	3774	1444	- ''	780	1700	AC200×Three phase	16

Heat exchange unit

experimental/laboratory purpose etc

HE-S series

General

Improve the efficiency for RO system operation

Feature

Specification

■ By adjusting water temperature to 25°C, it can ensure the stability of RO permeate flow amount.

*Also can be used for highly Silica-substance concentrated water

 $\mbox{\%}$ RO permeate water amount decreases 2.5% if the temperature drops by 1°C.

Indoor

Processing Model flow rate		Dimension (mm)			Product weight	Operating	Steam			
Model	(m/h)	W	D	Н	(kg)			Pressure supply (MPa)	Required steam amount (kg/h at 0.3MPaG Saturation)	
HE-3000-S	3		800	1640	160	190			119	
HE-6000-S	6	500	900	1690	200	230	Saturated	0.4~0.7	238	
HE-010K-S	10		950	1790	220	260	steam		397	

Membrane carbon acid removal unit

MD-A series

General

For life-prolonging of cartridge purifier and carbon acid removal from raw water

Feature

■ Reduce the loading of free carbon acid and contribute to long life for IER.*1

Prevent deterioration of EDI water quality by carbon acid. Even if free carbon acid fluctuates in raw water, it still can maintain the water quality stably. *2

Specification		Model	Processing flow rate	Dime	ension	(mm)	Product weight	Operating weight	nh	Air condition	
C P T T T T T T T T T T T T T T T T T T	Model	(m²/h at25℃)	W	D	Н	(kg)	(kg)	ph	Supply flow rate (L/min)		
		MD-A-6000	6	500	600	1700	110	120	1~14	385	Indoor

*1 In case it is used as pre treatment of a cartridge purifier.

*2 In case it is used as pre treatment of EDI.

The processing flow rate and the quality of treated water depend on the quality of raw water.
 The Installation space does not include space for maintenance.
 Pre treatment equipment may be required depending on the quality of raw water.

Cartridge type pure water production equipment

G series

General

Application

Top market share of a cartridge type purifier in Japan

Automotive/Machinery Medical/Cosmetic Chemical/Material **Electronics** Hospital Building/Hotel Quality control/Laboratory etc

Washing for experimental tools, industrial washing for electronics, metal and glass products etc., for the manufacturing of chemical products etc., for environmental test, for humidifier, for battery replenishing

Feature

Specification

Reduce troublesome work, Simple design, **Economical**

Only by connecting to a pressure pipping (ex. water facet) without troublesome installation work, pure water is supplied when a faucet is turned on. A pump is not necessary.

Ion exchange system with no chemicals and no wastes required

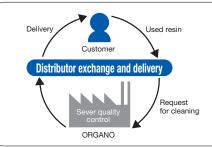
This cartridge purifier needs the replacements for IER when IER capacity is used up. ORGANO provides chemical regenerative service for which customers do not need to have chemical washing or disposal procedure. At the time of regenerating IER, ORGANO delivers to customer those IER after ORGANO has conducted IER quality check and pressure test on a cartridge based on ORGARNO standard

Specification table • Cartridge purifiers (G series) target at water conductivity less than1µS/cm (depending on raw water) for resin cartridges • The below amounts of water yield are only estimated values based on raw water 200µS/cm. Water quality differs depending on raw water quality

Model	Water yield (L) *Raw water 200µS/cm	Standard flow rate (L/h)	Cartridge height H1 (mm)	Total height H2 (mm)	Cartridge diameter D1 (mm)	Bottom diameter D2(mm)	Operating weight (kg)	IER amount (L)
G-5D	Approx.950	30~100	616	711	136	230	Approx.10	5
G-10D	Approx.1900	50~200	745	840	169	260	Approx.18	10
G-20C	Approx.3800	100~400	929	1024	212	320	Approx.38	20
G-35C	Approx.6650	180~700	1153	1248	234	345	Approx.58	35
G-50C	Approx.9500	250~1000	1042	1137	328	415	Approx.88	50
G-70C	Approx.13000	350~1400	1458	1553	330	415	Approx.110	70
G-200A	Approx.38000	1000~4000	_	1740	555	559	Approx.400	200

Indoor

Madal	Inlet/Outlet hose	Interface	Dalkhala	Opt	tion	Quality of
Model	(m)	interrace	Bolt hole	Filter mounting bracket	Recommended conductivity meter	treated water
G-5D	Inlet2/Outlet1					
G-10D			NA	Attachable		
G-20C	Inlet2/Outlet2	Joint nozzle 15A		Attachable	RG-12*1	Below
G-35C	miletz/Outletz	13/	3-ø 12		KG-12	1μS/cm
G-50C			3-ψ 12			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
G-70C	_	Union 15A		Non-attachable		
G-200A	Only Inlet2	Raw water inlet: inner ϕ 38 x outer ϕ 46.2(mm) Treated water outlet: 40A TS	NA		MH-9	


^{*1} In case the flow amount for flow switch is over 500l/h, whole pressure loss (including purifier) becomes more than 0.1MPa, which may affects smooth water-supply.

Resin recycle system

Ion exchange resin(IER) which has reached the capacity of the exchange can be usable again by the cleaning process. ORGANO has established resin recycle system to take back and clean the used IER. To maintain the quality of the resin, please make sure to use only tap water or well water which conforms to the level.

In case you use inappropriate water (ex. recycling cooling water). IER function is dramatically dropped due to contained heavy metal, organic solvent, oil or oxidizer and, as a result, IER cannot be recycled anymore. As ORGANO has the rules for recycle (eg. raw water is tap water or the resin is not used for the second process of cleaning circulation system). please contact us for the details.

Resin recycle system provides ECO-friendly products and services.

Please follow the safety precautions in the manuals to use our products safely. In case your usage conditions do not meet our requested conditions, please contact with us.

The processing flow rate and the quality of treated water depend on the quality of raw water.
Pre treatment equipment may be required depending on the quality of raw water.

Option

Electrical conductivity meter to issue alarm upon water quality problem RG-12

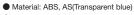
Automatic measurement using flow switch (manual operation by a lever is also usable).
Digital display with alarm contact.

2 points measuring electrical conductivity meter MH-9

Alarm output contact complying with DIN standard. Equipped with temperature compensation.

inpensation.

List of water quality meter


Model	Range (µS/cm)	Measuring points	display	Alarm set	Alarm output	Power	Applicable model	
RG-12	0.1~99.9	1	Digital	0	0	AA battery 2pcs	G-5~G-70	
RG-8A	~2	1	Lamp	_	_	AC100V (Adapter)		
MH-9	0.01~999*	2	Digital	0	0	AC100V	G-200	

^{*}Alarm set is for max 99.9µS/cm.

Related products

PF-Ⅲ

The transparent blue housing enables you to check dirtiness from outside. Suitable filters can be selected for each purpose (~500ℓ/h).

Applicable model: G-5/10/20/35

Please refer to P51

Housing SH series

Stainless steel housing for pre and post treatment filter

SH-D1-1C(~500L/h) SH-D1-2C(~1,000L/h) SH-D1-3C(~1,500L/h) SH3-2C(~3,000L/h) SH3-3C(~4,500L/h)

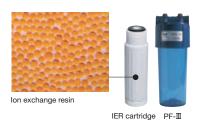
Material: Stainless steel SUS304

Applicable model: G-35/50/70/200

Please refer to P49

Dual type mounting bracket for PF-II housing

Applicable model: G-5/10/20/35I


Sister product

IER-CARTRIDGE

Model	Tian trate.		Quality of treated water	Water yield
001(for pure water)	Tap water	5~25L/h	1μS/cm以下	Approx.150L*1
002(for soft water)	Tap water	10~50L/h	Below 1mgCaCO ₃ /L(hardness)	Approx.900L*2
002(for soft water)	RO permiated	Below 130L/h	Below 10μgCaCO ₃ /L(hardness)	Approx.300m ³ *3

*1 In case of 200uS/cm of raw water quality

Product weight	Size	Material	Water conduction temperature
Approx 0F0a	47EVII2E0mm	חם. חד	1 . 40°C

For polishing

Highly pure water can be produced by setting it after cartridge purifiers.

• Applicable model: G-5/10

Desktop type cartridge purifier G-1 HB

Water yield	Standard flow rate	Quality of treated water
Approx. 150L (Estimated amount calculated based on 200μS/cm raw water)	5~25L/h	Below 1μS/cm(at25℃)

D	imensio	on	Operating	
w	D	н	weight	supply conditions
127	180	346	Approx. 3kg	•Raw water: Tap water •Max operation pressure: 0.1Mpa •Operation water temperature:5-40℃

Automatic pure water production system

AM-C/AM series

General

ORGANO's longtime seller
Mixed bed pure water production system

Application

Electronics Automotive/Machinery Food/Beverage
Chemical/Material

Electronics parts cleaning, chemical experiment, analysis tool cleaning, metal plate cleaning, process-use water for medical manufacturing, air conditioning humidifier, beverage/food manufacturing, other various processes such as used in hospital.

Feature

Save water - high efficiency of water utilization -

AM-C/AM series achieve 95%*1 of water recycle and contribute to the reduction of water consumption or water utility cost. Can cut drain water consumption by 40% and also acid and alkali drain by 30% comparing with ORGANO's conventional system (less loading on neutralization facility).

Save electricity and energy

AMC/AM series only consume only $10\%^{2}$ of electricity comparing with RO+electrical regenerating method. It can greatly contribute to the energy saving. It is ECO friendly system to reduce CO_2 emission.

*1 Reference value only when raw water quality is 100µS/cm. The value depends on raw water quality.

%2 The saving ratio depends on models

Short time regeneration - approx. 90 minutes

Having reviewed regenerative chemical passage, it shortens dramatically regeneration time comparing conventional systems. It can reduce the work of facility maintenance.

Easy daily control

Equipped with large sized 8.4 inch TFT color LCD touch panel. Easy understanding of operation condition and easy daily control. The measured data can be abstracted by USB in the front side of touch panel so that the operation data can be easily stored.

High safety

It adopts high safety regenerative chemical "H-20". Reducing the occurrence of Hydrochloric acid fume, it has enhanced the safety for chemical refilling work. it can minimize its influence to surrounding equipments or facilities.

Specification

Model	Processing	Installa	ition spac	ce (mm)	Product	Operating weight	Power	Power	IER amount(L)	
Model	flow rate (m/h)	W	D	Н	weight (kg)	(kg)	supply (V)	capacity (kVA)	Cation	Anion
AM-C-18D	1	1100 800	800	2400	230	500			18	36
AM-C-35D	2	1100	800	2440	265	700			35	70
AM-C-50D	3	1150	800	2700	330	860			50	100
AM-C-70D	4.2	1200	900	2500	390	1250			70	140
AM-6000-SR	6	883	1154	2831	770	1570	AC100 or	0.5	100	200
AM-012K-SR	12	960	1448	3200	880	2350	AC200	0.5	200	400
AM-018K-SR	18	1040	1656	3585	1020	3400			300	600
AM-024K-SR	24	1213	2164	3931	1380	4470			400	800
AM-030K-SR	30	1402	2200	4023	1500	5230			500	1000
AM-036K-SR	36	1402	2287	4084	1670	6110			600	1200

Model	Water yield (m/cycle) Raw water conductivity		Acids and alkalis drain	General waste water		nemical amount ycle)	treated water
	100μS/cm	200μS/cm	(L/cycle)	(L/cycle)	H-20	25%NaOH	(at 25℃)
AM-C-18D	17	8.3	436	280	8.6	11.3	
AM-C-35D	34	16	838	522	16.7	22.0	
AM-C-50D	48	23	1149	733	23.9	31.5	
AM-C-70D	68	32	1647	1042	33.4	44.1	
AM-6000-SR	85	41	2220	1320	47.8	62.8	Below
AM-012K-SR	180	82	4320	2660	95.6	125.6	1μS/cm
AM-018K-SR	260	120	6260	3640	143.4	188.4	
AM-024K-SR	340	170	8220	4780	191.3	251.2	
AM-030K-SR	430	215	10210	5870	239.0	314.0	
AM-036K-SR	520	260	12230	7020	286.9	376.8	

The processing flow rate and the quality of treated water depend on the quality of raw water.
 The Installation space does not include space for auxiliary equipment (chemical injection device etc.) and maintenance.

Pre treatment equipment may be required depending on the quality of raw water.
 The water yield is only for reference.
 Acid and alkali waste water needs neutralization process separately.

Manual type pure water production system

HM series

General

Mixed bed pure water production system adopting manual single control valve

Application Electronics

Automotive/Machinery Food/Beverage

Chemical/Material

Cleaning for precision apparatus, electronics parts, metal plating, Process-used water for medical manufacturing, food/beverage, other various process etc.

Short-time regeneration - Approx. 90 minutes

Having reviewed regenerative chemical passage, it shortens dramatically regeneration time comparing with conventional systems. It can reduce the work of facility maintenance.

Easy operation

HM-50B

As this system adopts single control valve, the operation can be controlled more easily.

Specification

Feature

Model	Processing flow rate	Installa	ition spa	ce(mm)	Product *1	Operating*1 weight
Model	(m²/h)	W	D	Н	weight (kg)	(kg)
HM-9B	0.5	1400	1050	1800	92	285
HM-18B	1	1400	1100	2400	113	322
HM-35B	2	1600	1150	2450	146	525
HM-50B	3	1600	1150	2600	213	760
HM-70B	4.2	1750	1250	2500	248	950
HM-100B	6	1800	1300	2850	283	1375

48

	l									1 March
HM-50B	3		1600	1150	2600	213	760		<i>[</i>	M
HM-70B	4.2	2	1750	1250	2500	248	950		805	
HM-100B	6		1800	1300	2850	283	1375			
						·	_			
Model	IER amo	ount (L)	Water	yield(m²/cyd	cle) Raw v	water conductivity	Acids and alkalis		Regenerative chem	ical amount (L/cycl
Model	Cation	Anion	10	0μS/cm		200μS/cm	drain (L/cycle)	waste water (L/cycle)	35%HCI	25%NaOH
HM-9B	9	18		8.5		4.1	140	210	2.3	5.7
HM-18B	18	36		17		8.3	280	370	4.6	11.3
HM-35B	35	70		34		16	560	685	8.9	22

23

785

1105

1585

875

1355

1795

Indoor

128

179

25.6

HM-70B 70 140 68 32 HM-100B 200 100 96 46 ※1 Measuring tank included

100

Indoor

31.4

44

62.8

Option

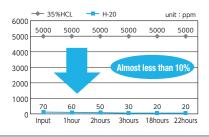
Raw water supply unit SP-MB series

50

One packaging of raw water tank, pump, filter and power source. Reduce installation time by easy transfer of equipment.

Model	Raw wa			tion space(mm)		Operating	
Model	supp (m/h	oly tar h) (L		D	weight (kg)	weight (kg)	
SP-1000-ME	1.3	10	0 700	940	160	280	
SP-2000-ME	2.4	20	0 980	1000	180	420	
SP-3000-ME	3.3	30	0 1070	1130	200	560	
SP-4200-ME	4.7	50	0 1580	1350	290	890	

Applicable model: AM-C/AM/HM series


H-20

Reduce fume generation during chemical input.

H-20 is 20% hydrochloric acid developed for regeneration for pure water production system. 35% hydrochloric acid may cause safety problem by its fume and furthermore damage surrounding facilities. On the other hand, H-20 can be used as safe regenerant without affecting surroundings with only little fume.

- Safe refilling work for chemical input Prevent damage to surrounding facilities
- No exhaust facility required

Fume generation experiment comparing 35% hydrochloric acid and H-20

- The processing flow rate and the quality of treated water depend on the quality of raw water.
- Pre treatment equipment may be required depending on the quality of raw water.

 The water yield is only for reference.
 Acid and alkali waste water needs neutralization process separately.

2B type pure water production system for high purity

MG-S series

General

Reduce Silica concentration and drain water by short-time regeneration

Application

Feature

Specification

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic

Cleaning for precision apparatus, electronics parts, process-used water for medical or cosmetic manufacturing, food/beverage preparation water, other various process etc.

Short-time regeneration (approx. 45 minutes)

time against MB type IER regeneration.

With simultaneous regeneration of cation and anion towers, it can shorten its regeneration

Save chemicals - ECO

Using up-flow regeneration method, the effective utilization of regenerant (HCI, NaOH) can be realized. (Less than 60% regenerant consumption of MB type.)

High purity

New technology achieves less than 1µS/cm purity by short time. Guarantee Silica less than 0.1ppm by heating regeneration of NaOH.

Product Operating Processing Installation space(mm) Power Power supply (V) Model flow rate (m/h) weight (kg) weight (kg) capacity (kVA) W D MG-S-1500-0E0 2300 140 10 230 1000 MG-S-2500-0E0 2.5 2500 170 400 20 MG-S-5000-0E0 2700 1100 210 680 35 AC200 1880 MG-S-1500-0S0 1.5 2300 150 240 1000 Three phase MG-S-2500-0S0 25 2500 170 400 1100 MG-S-5000-0S0 2700 180 670 4 MG-S-010K-0S0 3000 1500 270 1230

MG-S heats and regenerates NaOH in order to reduce Silica. There are 2 methods of heating by electricity (Model: 0E0) or steam

(Model: 0S0), which is selectable ***MG-S-010K** is only with steam method

Indoor

Model	IER amount(L)		Water yield (m/cycle) Rar water conductivity		Acids and alkalis drain	Regenerative chemical amount (kg/cycle)		Pure water usage	Steam flow
Model	Cation	Anion	100 <i>μ</i> S/cm	200 <i>μ</i> S/cm	(L/cycle)	35%HCI	25%NaOH	(L/cycle)	(kg/h)
MG-S-1500-0E0	25	50	20	9.6	600	5	12	170	_
MG-S-2500-0E0	50	100	40	19.2	1050	10	24	350	_
MG-S-5000-0E0	100	200	80	38.4	2000	20	48	700	_
MG-S-1500-0S0	25	50	20	9.6	600	5	12	170	13
MG-S-2500-0S0	50	100	40	19.2	1050	10	24	350	26
MG-S-5000-0S0	100	200	80	38.4	2000	20	48	700	52
MG-S-010K-0S0	200	400	160	76.8	4000	40	96	1400	104

- The processing flow rate and the quality of treated water depend on the quality of raw water. 🌘 The Installation space does not include space for auxiliary equipment (chemical injection device etc.) and maintenance.
- Pre treatment equipment may be required depending on the quality of raw water.
 The water yield is only for reference. Acid and alkali waste water needs neutralization process separately

High-performance pure water production system

SG-X series

General

High performance pure water production system realizing high quality, short-time regeneration, and short-time installation.

Application

Automotive/Machinery Food/Beverage

Chemical/Material

Cleaning for precision apparatus, electronics parts, process-used water for medical or cosmetic manufacturing, food/beverage preparation water, other various process etc.

Feature

Specification

Save chemicals - ECO

Resin flow is eliminated during chemicals injections in a way that reinforced resin of the bottom inside body is packed by partition plate. It can achieve the reduction of regenerative drain water without backwash water.

Short-time regeneration (approx. 60minutes) By using ward flow for chemical injection process and back wash process, weak IER bed can be regenerated in a backwash form. It can shorten the regeneration time by 30 minutes over conventional system.

Model	Processing	SG-X1	series	SG-X2 series(polisher-attached type			
	flow rate	Quality of tr	eated water	Quality of treated water			
	(m³/h)	Conductivity	Ion Silica	Resistivity	Ion Silica		
SG-X-0750	24	Below 2μS/cm		Above 5MO∙cm			
SG-X-0850	31				Below		
SG-X-1000	43		Below				
SG-X-1200	62		20μSiO ₂ /L	(at 25°C)	20μSiO₂/L		
SG-X-1400	84			(41. 25 C)			
SG-X-1600	110						

Indoor Outdoor

The processing flow rate and the quality of treated water depend on the quality of raw water.
Pre treatment equipment may be required depending on the quality of raw water.

Unit type ultrapure water production system

UC series

General

The latest model of one compact unit consisting of pretreatment, pure water purification and subsystem

Application Electronics

Automotive/Machinery Food/Beverage Chemical/Material

Cleaning for precision apparatus, electronics parts, process-used water for medical manufacturing, food/beverage preparation water, other various process etc.

Feature

Easy daily control

No necessary to adjust flow amount

With Organo in-house "automatic flow control system", there is no need to adjust flow rate.

Daily maintenance gets easier.

Higher usability with large-sized touch panel

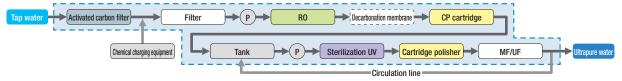
Equipped with 8.4 inch large-sized color touch panel. Can easily check its whole flow and operation condition.

Easy system control with operation data saved in CF

Menu display

Flow picture

Save water


Equipped with RO element dispersing agents (G510), it supports the water of high degree of hardness. No wasteful water with constantly high recycling rate.

Save energy

RO and pure water pump with inverter reduce wasteful energy consumption by automatic control. Contribute to energy saving.

Compact size

25% size reduction comparing with conventional systems. Can utilize the space effectively.

Specification

Flow

Model	Processing flow rate	Dimension (mm)			Product weight	Operating weight	Power supply	
Model	(m/h)	W	D	Н	(kg)	(kg)	(V) · · ·	
UC-1300-UF	1.3	1,925		1,990	Approx.1,170	Approx 1 700	AC200	
UC-1300-MF			1 530			Арргох. 1,700	× Three phase	
UC-2600-UF	2.6	2.025	1,550		Approv 1 250	Approx.2,025		
UC-2600-MF		2,025			Αμριολ.1,330	πμριολ.2,023	(30, 30112)	

Quality of treated water	UC-UF series	UC-MF series	
Resistivity	Above 17.5MΩ•cm	Above 17.5MΩ•cm	
Micro particles	Below 10units/mℓ(0.2μm)	Below 30units/mℓ(0.2μm)	
Bacteria	Below 0.05units/ml	Below 0.1units/ml	
TOC			Indoor

*Above TOC values are only based on raw water TOC below1.0mg/L.

Option

Membrane decarbonation module

For pro-longing cartridge purifiers.

Related products

Scale preventive for RO membrane

It has highly preventive effects for Silica and Calcium Carbonate scale and improves water recycling efficiency for RO membrane.

8kg Box(2kg x 4bottles)

Easy handling by small packed bottles(2kg).

The processing flow rate and the quality of treated water depend on the quality of raw water.
The dimensions do not include the space for maintenance.
Pre treatment equipment may be required depending on the quality of raw water.

Cabinet type ultrapure water production system

FP series

General

Cabinet size to save space

- Ideal for central water supply for laboratory use-

Application

Feature

Flow

Specification

Automotive/Machinery | Medical/Cosmetic | Chemical/Material Hospital Quality control/Laboratory

Analysis/culture test, high-level cleaning for semiconductor industry etc, quality control for medical products, water supply for Hemanalysis immunodiagnosis device, water supply for clean room etc.

Adopt top quality grade of next generation IER for highly ultrapure water.

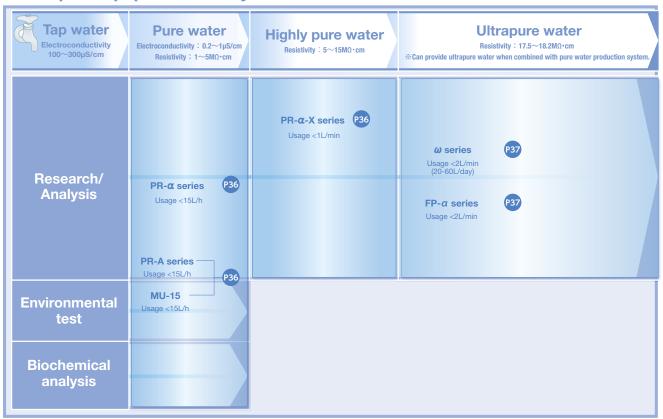
Excellent production capacity (\sim 500 ℓ /h) which desk top system cannot reach.

Equipped with real-time TOC monitor.

- With the recommended per-treatment system (PR-SG series), it enables ultra-pure water supply from tap water.
- Data saving of water quality and maintenance history etc.

%Only for models equipped with oxidation UV

	Mo	dol	Processing flow rate	Dime	ension (mm)	Operating weight	Power	Power capacity	Final filter	UV	TOC monitor	Quality of treated water
	Model	uei	(L/h)	W	D	Н	(kg)	supply (V)	(kVA)	rillat littei	OV		
	FP-0500	SM-000	500					AC100±10% 50-60Hz universal		MF	Sterilization	-	
		SU-000		350 7	750	1,400	Approx. 100		1	UF	Sterilization	_	Above
		XM-0T0							'	MF	Oxidation	0	18.0MΩ·cm
		XU-0T0								UF	Oxidation	0	


Indoor

The processing flow rate and the quality of treated water depend on the quality of raw water. 🔵 The dimensions do not include the space for maintenance.

Pre treatment equipment may be required depending on the quality of raw water.

Laboratory Pure Water and Ultrapure water

Lineup of equipment and systems H₂O is produced from tap water at the required quality level.

ASTM D1193-06(2011) Reagent Grade Water Specifications

Parameter	Type-I	Туре-ІІ	Туре-Ш	Type- IV	
Resistivity(min) MΩ•cm(25°C)	18	1	4	0.2	
pH(25°C)	-	-	-	5.0-8.0	
TOC(max) μg/L	50	50	200	-	
Na⁺(max) μg/L	1	5	10	50	
CL ⁻ (max) µg/L	CL ⁻ (max) μg/L		10	50	
Total Si(max) µg/L 3		3	500	-	
Euipment name	ω(OMEGA) FP-α(ALPHA) FP-0500	PR-α-X(ALPHA)	PR-SG SD-SG PR-A MU-15	G series	

Desktop type pure water and ultrapure water production equipment

General

Application

New generation with a wide selection of usage!

Quality control/Laboratory

Device for analyzing ultratrace metal (ICP-MS, ICP-AES, IC, FL-AAS) Organic analysis (HPLC, LC-MS)

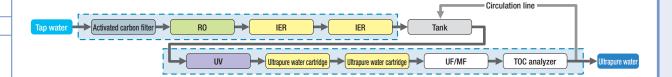
Bio experiment (iontophoresis, molecular biological experiment)

Pre-treatment for analysis or adjusting reagent, cleaning purpose etc.

Feature

FP-α

- Specially refined IER is used to produce highly ultrapure water.
 High purity and low TOC are achieved by double-pass IER process.
- All models are equipped with circulation system for ultrapure water tank. Without fitting a sampling port
 filter (which often causes contamination problems), its ultrapure water can be used for highly sensitive
 analysis etc.
- By adopting UF specification for Bio research, RNase, DNase, and Endotoxin-free ultrapure water is produced. No DEPC treat process and No autoclaves after treatment.
 **FP-0120-UT0


PR-α

- Low cost and high performance one-touch cartridge is adopted.
 Easy cartridge replacement and running cost reduction.
- Double pass IER system. The impurities leaked from the first pass is removed from the next pass.
 No concerns about the water quality deterioration when IER is saturated.
- Achieve the water level of TypeII(ASTM D1193-6). Save water and energy as an alternative to distiller supporting TypeII. *-X00/-Xt0 only

Flow

Specification

Model	Quality of	TOC			ension (mm)	Operating	Power	Final filter	TOC monitor						
Model	treated water	(ppb)	flow rate	W	D	Н	weight (kg)	consumption(VA)	i illat littei	TOC IIIOIIIIOI						
FP-0120 α -UT0	18.2 M Ω ·cm	1~3							UF	Real time						
FP-0120 α -MT0				1~3	~ 2L/min				Approx.26		MF	Real time				
FP-0120 α -M00		_	354	335 448	448	340 (AC100 ~	IVIF	_								
PR-0015 α -XT0	0.2 <i>μ</i> S/cm				50	FO	FO	FO	~ 1L/min	334	333	440	Approx.28	240V)		Real time
PR-0015 α -X00		50	· ~ 1L/111111				Approx.26		_	_						
PR-0015 α -000		_	_				Approx.25									

 $\ensuremath{\,\%\,}$ A tank and a dispenser are necessary separately

Indoor

• The processing flow rate and the quality of treated water depend on the quality of raw water. • The dimensions do not include the space for maintenance.

0

0

Cabinet type ultrapure water production equipment

 ω (OMEGA) series

General

ORGANO flagship model

Ideal for ultratrace-metal analysis, organic analysis, bio experiment

Application

Quality control/Laboratory

Device for analyzing ultratrace metal (ICP-MS/MS, ICP) Organic analysis (HPLC, LC-MS)

Bio experiment (iontophoresis, molecular biological experiment)

Pre-treatment for analysis or adjusting reagent, cleaning purpose etc.

Feature

Perfecting "purity"

Water quality of ultrapure water is critical to micro-analysis or highly sensitive analysis. Extremely pure H2O is required.

- Resistivity: 18.2MΩ•cm/ TOC≦1ppb / Silica<0.1ppb / Boron<10ppt</p>
- RNase, DNase, Endotoxin-free water
- High grade IER of new generation for extremely ultrapure water

Perfecting "usability"

Highly improved functionality without contamination during operation.

One-drop, continuous, fixed volume and foot-switch collection are selectable.

Perfecting "installation"

Ideal for laboratory applications. "Simple is best."

- One package with a built-in tank, no stand required.
- Easy equipment transfer with casters.

Quality oftreated water

[Example of results by ICP-MS]

Element	unit	QL
Na	ng/L	<0.1
K	ng/L	<0.1
Ca	ng/L	<0.1
Mg	ng/L	<0.1
Fe	ng/L	<0.1
Cu	ng/L	<0.1
Zn	ng/L	<0.1
Cd	ng/L	<0.1
Ni	ng/L	<0.1
Pb	ng/L	<0.1
Mn	ng/L	<0.1
Al	ng/L	<0.1
Со	ng/L	<0.1
Cr	ng/L	<0.1
В	ng/L	<10

- * The values by Agilent7500 (continuous water collection).
- * The quality of treated water depends on the quality of raw water.

Flow

Specification

Circulation line	
Tap water Activated carbon filter RO EDI Composite cartridge Tank	
UV Ultrapure water cartridge Ultrapure water cartridge UF TOC analyzer Ultrapure water cartridge	r

Model	Processing	Equipme	nt dimens	ion (mm)	Dispense	er dimensi	on (mm)	Product weight	Power supply	Power capacity	Tank
Model	flow rate	W	D	Н	W	D	Н	(kg)	(V)	(VA)	(L)
ω	one drop to 2L/min	300	600	1100	300	300	600	85	AC100±10%	200	20
ω60	one drop to 2D min	450	700	1200		300	000	150	AC100±1076	200	60
	•										Indoor

The processing flow rate and the quality of treated water depend on the quality of raw water.
The dimensions do not include the space for maintenance.

Pure water production equipment

Application

Hospital Quality control/Laboratory

Biochemical analyzer, substitution for distillation apparatus, cleaning for lab experiment, reagent adjusting water, raw water supply to ultrapure water production/tester/washer/humidifier etc.

Desktop type pure water production equipment

PR-A series

General Feature

Flow

Specification

General Feature

Flow

Specification

Small foot print and reduction of utility cost as an alternative to a distiller

- Save installation space comparing with distillers
- Save utility and water usage cost as an energy saving product
- Easy maintenance with IER cartridge
- Easily obtain pure water
- 0V1 type has sterilizing UV lamp and can prevent bacteria in treated water

Model	Processing flow rate		ension (mm)	Operating weight	Power supply	Power capacity	Quality of
Model	(L/h at25°C)	W	D	Н	(kg)	(V)	(VA)	treated water
PR-A-0015-001	15	328	325	436	Approx.10	AC100±10%•50-60Hz	70	Below
PR-A-0015-0V1			323	436	Арргох.10	AC100±10%*50-60HZ	120	1μS/cm

%1 PRA-0015-0V1 only

Desktop type pure water production equipment

MU-15

By one touch replacement, it can reduce maintenance procedures

- One compact package of activated carbon cartridge + RO + IER cartridge (attached with 12l pressure tank).
- Easy cartridge replacement by one touch.

Activated carbon filter

Model	Processing flow rate	Dim	ension ((mm)	Operating weight	Power supply	Power capacity	Quality of	
Wiodei	(L/h at25°C)	w	D	н	(kg)	(V)	(VA)	treated water	
MU-15	15	343	185	420	Approx.10	AC100±10%	24	Below 1μS/cm	Indoor

*The above space and weight do not include a pressure tank.

- The processing flow rate and the quality of treated water depend on the quality of raw water.
- The dimensions do not include the space for maintenance.

Indoor

Pure and ultrapure water for laboratory

Final filter (removal of micro particles and bacteria)

Capsule filter

General

Final filter for ultrapure water production equipment for laboratory

Application

Quality control/Laboratory

Final filter for ultrapure water production equipment, removing bacteria from culture medium in medical industry, filter for various processing, filtration to dilute solution, integrated disposable filter in analysis device, etc.

*A special bush is included (optional) in the above image

Installation image

Feature

- Cleaned by ultrapure water (≥18MΩ•cm) before shipping, it can reduce elution from filter and enables stable analysis results.
- All items have passed integrity tests (non-destructive). Hence, it can be used for various purposes.
- Light weight and compact design enable smooth sampling work.

Specification

Model	Pore diameter	Dimension (mm)	Max. working	Pressure		Inter	face		Mate	erial	
Wodei	(μ m)	φ x H (mm)	temperature	MPa	IN	OUT	Vent	Drain	Body	Filter	
Capsule filter	Abs 0.22	72.5 × 85	40 (0.15MPa)	0.39 (25℃)	NPT1/4	NPT1/4	NPT1/8	NPT1/8	PP	PES	1

Indoor

Electrolyzed Water

What is Electrolyzed Water?

It is a collective term of solution obtained via electric treatment by low electric current/voltage from tap water, diluted hydrochloric acid/saline or sodium bicarbonate water.

What is Slightly Acidic Electrolyzed Water?

Slightly Acidic Electrolyzed Water is getting common in various industries requiring hygiene management such as the food industry. It is hoped to be a sterilization function as an alternative to conventional sodium hypochlorite since it has excellent features different from other commonly used chloride agents.

What is Alkali Electrolyzed Water?

Alkali electrolyzed water production system produces Alkali water electrolyzed from inorganic-salt solution which is harmless such as sodium bicarbonate. The system is receiving a lot of attentions as an alternative to washing agent as oils, fats and protein are safely washed and raw material is only sodium bicarbonate.

Slightly acidic electrolyzed water production equipment

General

Application

Feature

Ideal for bacteria elimination and deodorization

kitchen Health and Welfare facilities

Bacteria elimination in the food industry for food, ice, fish and shellfish, grazing, cooling water, machine, conveyer, container, hands, cloths etc, toilet cleaning, bacteria elimination in fish farm, work place etc.

Sterilizing substance Slightly acidic Chlorine concentration Sterilizing capability Hypochlorous acid pH5.0-6.5 10-30ppm 80-150 times of (HOCI) (Drink water: approx. pH7.5) (Drink water: 0.1-0.4ppm) Hypochlorite ion (OCI⁻)

- Trihalomethane is not generated
- It contributes to high-quality sanitary control as it is effective to most of bacterias
- It does not influence the taste, color, and nutrition of the food as it has originally almost no taste and odor.
- It has almost no influence on surrounding facilities due to only slight metal corrosion and rust.
- Waste water can be released without treatment.

Specification

Process flow rate (L/h) 300~10.000 Indoor

Alkali electrolyzed water production equipment

General

Application

Feature

Specification

This new system does not generate wasteful acidic water

Electronics/Precision apparatus Automotive/Machinery Food/Beverage

Degreasing for metal parts (substitution to surfactant), removing chips-cutting oil, prevent iron rust, cleaner for cooking/kitchen purposes, cleaning water(for rooms, floors or appliances etc.) etc.

- Excellent effect of grease removing and rust prevention
- ECO design without emission of waste acidic water
- Easy waste-liquid treatment

- Safe use
- Economical

Raw water	Quality of	Processing flow of	Dim	ension (ı	nm)	Raw material	Power supply	Product weight	Operating weight	
naw water	electrolyzed water	electrolyzed water	w	D	н	naw iliateriai	(V)	(kg)	(kg)	
Soft water or pure water	pH10~12.5	12~480L/h	300	330	460	Sodium bicarbonate (NaHCO3 99%)	AC100•50/60Hz	13	20.7	Indoor

Other equipment

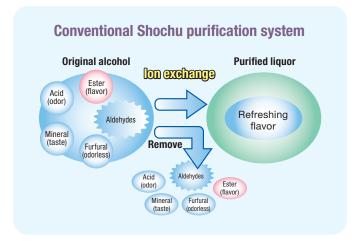
Japanese distilled spirit (called Shochu) purification equipment

General

Improve mild taste with retaining Shochu original flavor The most popular equipment in the industry

Application

Purification for Shochu


Feature


Flavor-retaining purification method

Food/Beverage

With breakthrough technology to retain active flavor ingredients of Ester and eliminate Aldehyde, it achieves the product with the best flavor originally coming from Shochu raw ingredient.

Specification

	Shochu	Alcohol injection	Di	Dimension (mm)		Product	Operating		Resin amount(L)			
Model	purification yiled	flow amount		,	•	weight	weight	Power supply (V)	Anion tower	MB t	ower	
	(L/cycle)	(L/h)	W	D	н	(kg)	(kg)	()	Anion	Cation	Anion	
Type 1	1300	54~135	2850	2500	2500	320	500		25	9	18	
Type 2	2600	110~270	2050	2900	2900	370	700	(Electroconductivity	50	18	36	
Type 3	5000	210~530	3100	3200	3200	450	1000	meter)	100	35	70	
Type 4	7200	300~750	3400	3400	3400	600	1400	AC100×Single phase (Alcohol supply pump)		50	100	
Type 5	10000	420~1100	3700	3200	3200	730	1800	AC200×Three phase		70	140	
Type 6	14400	600~1500	3800	3600	3600	830	2300		280	100	200	

Indoor

Multi stacked tray type aerator

General

Aerator with compact size and high efficiency

Application

Automotive/Machinery Food/beverage Chemical/Material Hospital Quality control/Laboratory etc

Removal of volatile compounds in water, prevention of spread polluted ground water, treatment of industrial waste water

Feature

High process capability

Multi-stacked method enables high gas-liquid contact ratio.

Compact design -

With using trays, low equipment height and easy indoor installation.

Flexible support for various raw water conditions

Using multi-stacked trays, can flexibly support the fluctuations of raw water concentration and water

Easy maintenance

Trays cab be cleaned at inspection doors. Making the trays easy in disassembling, it is excellent in maintainability.

Specification

Model	*1 Processing		Dimension	Number of tray stacking	Body		
Model	flow rate	w	D	н	(Stacks)	material	
1300-P	0.1~3.4	800	1800	1700~2000	1~4	PE	
1300	0.1~5.0	1000	1000	1700~2300	1~5	SUS304	
2300-P	0.2~10	1350	2500	1700~2000	1~4	PE	
2300	0.2~10	1000	1300	1700~2300	1~5	SUS304	
2600	0.5~20	1900	1300	1700~2300	1~5	SUS304	
3600	0.7~30	1900	1800	1700~2300	1~5	SUS304	
31200	1.4~60	3800	1900	1700~2600	1~5	SUS304	
41200	1.8~80	3800	2300	1700~2600	1~5	SUS304	

Indoor Outodoor

Organo prepares treatment equipment for exhaust gas drained from the equipment.

Organic-chlorine compounds removal equipment

Ideal for removing Organic-chlorine substance from ground water

Food/beverage Hospital Building/Hotel

Removal of organic chlorine compound from well water

Feature

General

Specification

Compact design It realizes compact size by the injection with high water flow rate. Saving space and short-time installation.

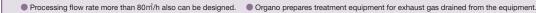
High process capability

By having raw water flow from upside by downward stream, and also sufficient gas-liquid contact from bottom air, the efficient removal of organic-chlorine substance is achieved.

Specificatio	
	٦

Model	Processing flow rate(m³/h)	Tower diameter (mm)
800-90	18~27	φ800
1000-90	27~39	φ1000
1200-90	39~59	φ1200
1450-90	59~80	φ1450

Easy maintenance


Since aeration process is done by packed tower method, the equipment is simple. Futhermore, the maintenance is easy without increasing of algae and intrusion of dust.

Safe operation (A lot of achievements in purification plants)

In combination of aeration process and exhaust gas treatment (optional), the equipment can remove organic-chlorine compounds from ground water and exhaust gas (No worries about air pollution by exhaust gas of organic-chlorine compounds).

Indoor Outodoor

^{*1} The maximum processing flow rate may not be reached due to some substances or concentration ratio of raw water

^{*2} The dimensions are the only estimated values for standard agrator tower and blower with optional stand and pump for tr

Experimental ion exchange resin column

For laboratory and experiment etc.

Mots suitable for the experiment for ion exchange resin or synthetic adsorbent

General

Application

Feature

Specification

For many applications

Quality control/Laboratory

Applicable to to a variety of solutions from drainage water to organic water as fluorine resin material is used in all liquid-contact areas.

Easy installation

Equipped with necessary tools for experiments, an experiment can be started immediately after installation. **Excellent durability**

Can prevent chemical corrosion by fluorine resin coating on pedestal parts. It is excellent in corrosion resistance.

Compact storage

Packable in compact as it can be separated into 2 shaft

Column	Material	Filter content (mL)	Inner diameter (mm)	Height (mm)
Column	PFA (Fluororesin)	50	16	Approx.440
Separatory	Material	Content (mL)	Height (mm)	
funnel	PFA (Fluororesin)	1000	Approx.440	

	Mate	erial	Product weight(kg)	Height (mm)		
Stand	Pedestal	Shaft	Product weight(kg)	Height (IIIII)		
Stand	SPCC (Fluororesin coating)	SUS	Approx.3	1018		

Related products

General

Application

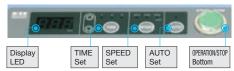
Feature

Ion exchange resin/Synthetic adsorbent

ORGANO sells experimental Ion exchange resin(IER) for customers considering of using IER or of conducting verification experiment before using IER.

*Content 500mL (or 200g)

Indoor


Homogenizer

400

For bacteria testing in consideration for hygiene

Quality control/Laboratory Bacteriological inspections for food

Display

Display is highly visible and usable, which contributes to efficient

Count down indication of remaining operation time enables easy

Improve usability

Ensure hygiene

Adopt easily understandable touch panel, time setup, display of count-down remaining operation time, 3-step paddle speed setting, Auto setting, etc.

Easy insert of bag

Paddles on left and right stop simultaneously and realizes smooth insert of bags.

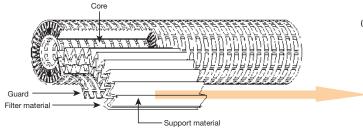
no need to clean equipments, which contributes to efficient usage.

There is no contact between sample and equipment by suspension in disposal bags and also

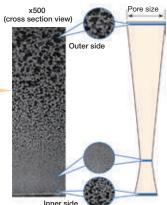
Specification

Model	Capacity	Operation time	Speed	Dime	ensions		Power	Product	
Wodel	(mL)	set	setting	W	D	н	consumption (W)	weight (kg)	
400	80~400	10-600 secs (by 5secs interval)	3steps (200, 230, 260rpm)	283	411	294	100	22	

Indoor


•	pe size					Micro filter Absolute pore size								
	size erial			D	Abs	olı	ute pore	SIZ	Polyether sulfone (PES)		PTFE			
	eriai cture			Ρ(DIYSUITOTT				Pleated type		PIFE			
	del		BS	T	BC		A		HP		FT			
Image														
Heat resis	stance([°]	C)			70~90						_			
Sterilization condition (Except type1)			-		-	_		Heat sterilization 95°C/60mins x 100times Autoclave sterilization 121°C/30mins x 10times Inline steam sterilization 135°C/60mins x 50times			utoclave sterilization 125°C/30mins 10times			
Inter- membrane	Psitiv at 25°				0.54						0.49			
differential pressure (MPa)	Revers at 25°						0.34							
			1 0.10μm	1	0.10μm	1	0.10μm	2	0.20μm	4	Vapor:0.10μm/Liquid:0.45μm			
			2 0.20μm	2	0.20 <i>μ</i> m	2	0.20μm	4	0.45 <i>μ</i> m	-	_			
			4 0.45μm	4	0.45μm		0.45μm		0.65μm	-	_			
				8	0.80μm	8 0.80μm		-	<u> </u>		_			
			-	-	_	-	_	-	_	-	_			
				-	_	-	_	-	<u> </u>	-	<u> </u>			
				-	_	_	_	-	_	-	-			
				+	-	_	_	-	<u> </u>	-	-			
Pore si	ze code		<u> </u>	+	_ _			-	- =		_			
				-	_			-						
				-	_	-	_	-	_	-	_			
				-	_	-	_	-	_	-	_			
				-	_	-	_	-	_	-	_			
			- –	-	_	-	_	-	_	-	_			
			- =	-	_	-	_	-	=	-	_			
			- –	-	_	-	_	-	_	-	_			
				-	-	-	_	-	-	-	-			
Character			Both-ends gasket		Both-ends gasket	Bot	h-ends gasket		Both-ends gasket		Both-ends gasket			
Shape code			O ring-226	_	O ring-226		-		O ring-226		O ring-226			
			O ring-222	10	O ring-222		-	10	O ring-222	10	O ring-222			
Length	S(1)				250mm \$\frac{1}{257mm} \frac{1}{257mm} \frac{1}{257mm}		250mm	0			250mm \(\frac{1}{25} \) 313mm \(\frac{1}{25} \) 257mm			
code	D(2)		3 30411111 3 30311111 3 30311111		504mm 565mm 509mm	_	00mm	FA I	504mm 5 565mm 5 509mm 756mm 8 817mm 6 761mm	12	504mm 565mm 509mm			
Features (main applications)		s)	Description 25 2756mm 25 2756mm 25 2756mm 25 2757mm 25 2756mm 2		756mm 50 817mm 50 761mm 10 761mm 20 761mm	■ Adopt High grade polysulfone membrane. ■ Excellent cost-performance filter for sterilization and removal of micro particles.		Hydrophilic asymmetrical PES membrane filter for the food industry. Heat resistance for heat sterilization conditions. Sterilization and removal of micro particles used in pharmaceutical or cosmetic			756mm			

	Micro	RO wound						RO wound	PF						
					No	omi	nal pore s	ize							
	Polypropylene(PP)	Р	olyester		Po	lyp	ropylene (PP)		Cotton	Poly	propylene (PP)	Granulated active carbon	Fibrous active carbon	Granulated + Fibrous
	Pleated type				Layere		•	W	ound type	Woun	d ty	/pe		tivated carbo	n
	EU		N		PF-R-SL		PF-R-SN		PF-R-W	RO wound		cartridge	PF carbon	FA-C-2	PF-RC
	70~80						6	50					4	.0	
	_		_		_		_				_		_	_	_
	0.	49								0.39			0	34	
	0.15 **Only type with guard		0.15		_		_		_	_		_	_	_	_
04	0.4μm	1	1.0μm	005	0.5 <i>μ</i> m	005	0.5μm	005	0.5μm	_	1	1.0μm	_	_	_
1	1.0μm	10	10μm	008	0.8μm	008	0.8μm	008	0.8μm	_	3	3.0μm	_	_	_
3	3.0μm	20	20μm	010	1.0μm	010	1.0μm	010	1.0μm	_	5	$5.0 \mu m$	_	_	_
10	10 <i>μ</i> m	40	40μm	030	3.0μm	030	3.0μm	030	$3.0 \mu m$	_	10	10μm	_	_	_
30	30μm	-		050	5.0μm	050	5.0μm	050	$5.0 \mu m$	_	-		_	_	_
40	40μm	-		70	7.0μm	100	10μm	100	10μm	_	-		_	_	_
-	<u> </u>	-		100	10μm	250	25μm	250	25μm	_	-		_	_	_
-	<u> </u>	-		120	12μm	500	50μm	500	50μm	_	-		_	_	_
-	<u> </u>	-		150	15μm	750	75μm	750	75μm	_	-		_	_	_
-	<u> </u>	-		170	17μm	10H		10H	100μm	_	-		_	_	_
-	<u> </u>	-		200	20μm	15H	150μm	15H	150μm	_	-		_	_	_
-	-	-		300	30μm	-	_	20H	200μm	_	-	<u> </u>	_	_	_
-	_	-		400	40μm	-	_	-		_	-			_	_
-	_			500 700	50μm	_		Η		_				_	_
	_	H		700 900	70μm 90μm	-	_	-		_	H		_	_	_
		H		900 12H	90μm	_				_			_		_
_	_	-			150μm	-		-		_	_		_	_	_
	Both-ends gasket	Bot	h-ends gasket	-			_		_	_		_	_	_	_
	O ring-226		_	\vdash	O ring-226	(0)	otional)		_	_		_	_	_	_
	O ring-222		_	\vdash	 O ring-222				_	_		_	_	_	_
Sha	250mm 🖁 318mm 🖺 261mm	2	:50mm		250mm		250mm	2	50mm	250mm	2	:50mm	250mm	250mm	250mm
Shape Type	250mm 318mm 3261mm 500mm 750mm 818mm 3261mm 511mm 511mm 500mm 528mm 5311mm 531	5	00mm	5	500mm	5	00mm	5	00mm	_		_	_	_	500mm
ре 1	750mm 818mm 5 761mm	7	'50mm	7	750mm	7	'50mm	7	50mm	-		_	-	_	750mm
=1	Low elution type all-Polypropylene filter excellent in heat and chemical resistance. High filtration capability and low pressure loss to various applications Removal of sediment and micro particles for beverage, preparation water, brewery in the food industry. Chemical liquid filtration, removal of micro particles in water treatment line.	r r f f	 Hydrophilic polyester membrane pleated filter. Stable flow rate and long life. 		PP high-densi- ty layered filter with high filtration perfor- mance Multi layered filter made from various density nonwoven		High cost-per-formance of PP layered filters with low elutions. Suitable to applications to avoid elutions extremely.		Vide ange of Iters from .5um - .00um P type vound Iter	■ Protection and pre-filter for RO membrane ■ Adsorb foreign substances in water by charged membrane	ff cc kk v	PP wound ilter cleaned by pure water Prevent the leaks of foreign substanc- es by nonwoven in the deepest part	■ The two layered structure of activated carbon and pre-filter removes residual chlorine and impurities.	■ Fibrous activated carbon of high adsorption speed ■ Low pressure loss and clean structure preventing generation of fine powder	Mix carbon structure of granular and fibrous forms High capability and long life of removing residual chlorine


Cartridge filter

Development drawing of pleated cartridge

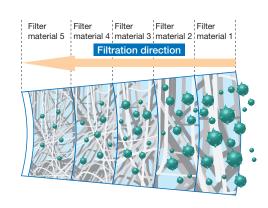
Structure

■ ORGANO's Polysulfone membrane has its asymmetric structure filtering large sized particles in surfaces and small-sized particles in fine layers. Symmetric membrane may tend to have clogging problems in surfaces and influence its flow conditions.

Feature

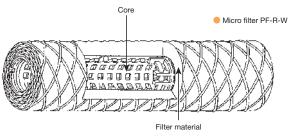
Structure

Feature

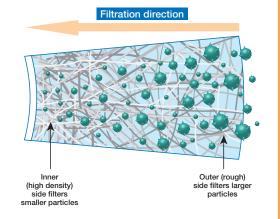


Symmetric membrane

Development drawing of layered cartridge



- Various kinds of filtration material (different pore size) with the structure of differential filtration density can filter the liquids with a wide range of particle size distribution.
- Filter fineness is designed to be higher in stages from outside to inside. The structure can achieve the filtration of various sizes of particles effectively.


Development drawing of wound cartridge

Structure

Feature

- Single filter material with getting finer from primary side (outer) to secondary side (inner).
- Gigging on filter surface improves the filtration efficiency.
- Efficient depth structure of utilizing whole filter layer enables longer life and higher filtering accuracy.

46

Hydrophilic asymmetric polyether sulfone(PES) membrane filter

Micro filter HP type

General

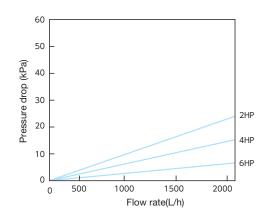
Hydrophilic asymmetric PES membrane filter with excellent heat resistance

Feature

High performance filter

Bacteria elimination capability: A bacteria adsorption test shows the 0.2um cartridge filter entirely adsorbs 10⁷ Pseudomonasdiminuta^{*1} and the 0.45um cartridge filter entirely adsorbs 10⁷ Serratia marcesens^{*2} per 1cm² membrane.

High grade material


Sealed by thermal welding method (no glue used), it is ideal for high grade water treatment systems. Washed by high purity water, there is relatively low elution and no influence on products. It has realized stable filtration.

High reliability

All parts have passed integrity test (non-destructive). It can be operated safely and stably

Specification (

	Filter	Asymm	etric PES				
Material	Support	Polypropylene					
Material	Parts	Polypropylene					
	Packing, O ring	Silicon	(standard)				
Heat	Shape type 1	70)°C				
resistance	Shape type 2	90)°C				
Pressure	Positive	0.539MPa(25℃)	0.249MPa (90°C)				
resistance	Back	0.343MPa(25℃)	0.169MPa (90°C)				
Us	able pH range	1~13					
	Hydrogen peroxide 3%	Applicable					
Germicide	Formalin 1%	Applicable					
	Chlorine water 10mgCl/@	Appli	cable				
Ethylen	eoxide sterilization	Appli	cable				
CI CIT CIT	Hot water	95℃ 60mins	x 100cycles				
Sterilization conditions	Autoclave	121°C 30mins x m	ore than 10cycles				
	Inline steam	135°C 60mir	ns x 50cycles				

Low elution type all polypropylene filter

Micro filter EU type

General

Feature

Polypropylene filter with excellent heat resistance and chemical resistance

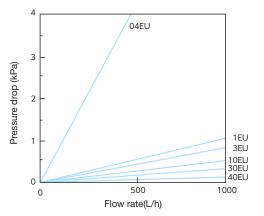
High heat and chemical resistance capability

Polypropylene widely used in all constructional elements except gaskets or 0-rings. Hence, the product can realize its excellent heat resistance and chemical resistance.

Low elution

As thermal welding method (no glue used) is applied for the manufacturing of this filter, it assures stable use for pre-treatment for ultrapure water production.

Pass standard regulation test for apparatus/container and package


The product has passed standard regulation elution tests to assure safe usage for customers.

Minimized pressure loss

Low loss of initial pressure for high flow rate filtration enables longer-time usage.

Specification

	Filter	Polypropylene
Material	Support parts	Polypropylene
	Guard	Polypropylene (only guard)
	Core	Polypropylene
	End cap	Polypropylene
	Gasket, O ring	EPDM(standard)
Heat	Shape type1	S:80℃ D/T:70℃
resistance	Shape type1 and 2	80℃
Pressure	Positive	0.49MPa(25°C) 0.20MPa(80°C)
resistance	Back	0.15MPa(25°C) 0.10MPa(80°C)

General

Micro filter PF-R type

Micro particles removing filter with a wide range of filtration accuracy

- The most suitable filter is selectable to each purpose -

PF-R-SL type

High-density layered filter with various functions from rough to fine filtration by one unit

- High sealability with end cap
- 18 kinds of pore size prepared for various applications

PF-R-SN type

Low-cost layered filter blocking micro particles in stages by mutli accuracy filtration layers.

- Multi layered filter made from various filtration accuracy nonwoven
- Finer filtration structure from outer to inner

PF-R-W type

Wound filter ranging from 0.5-200um size

- Finer filtration accuracy from outer to inner. Raising fiber element gets higher efficiency of filtration.
- Lowest cost version among PF-R series.

Specification

Pr	oduct	PF-R-SL	PF-R-SN	PF-R-W					
	Filter	Polypropylene(layered)	Polypropylene(layered)	Polypropylene(wound)					
Material	Core	Polypropylene	Polypropylene	Polypropylene					
	End cap	Polyethylene foam	-						
Heat	resistance	60°C							
Differential p	ressure resistance	0.49MPa(at25℃)							

Pure water filter PF cartridge

General

Removal of iron rust or impurities from tap water

- Feature Quickly reach high purity as all parts are cleaned.
 - Prevent leak by nonwoven in the deepest part.

Specification

Material	Filter	Polypropylene					
Heat resistance		40℃					
Differential p	ressure resistance	0.34MPa(at25℃)					
Initial p	ressure loss	0.005MPa					

PF-R-SL type

General

Long life activated carbon filter with huge flow and huge adsorption capability

Feature

High capability of residual-chlorine removing

Total filtration water mount is 80m³ (S type, removal ratio 80%) with longer life feature. The capability of removing residual-chlorine is twice as high as conventional filters.

Activated carbon filter PF-RC type

Low pressure loss

Initial pressure loss is below 0.03Mpa (standard flow rate) by using MIX activated carbons.

Pass standard regulation test for apparatus/container and package

The product has passed standard regulation elution tests to assure safe usage for customers.

Hygiene

Special activated carbon with bacteriostatic function can prevent the increase of bacterias.

Specification

Material	Filter	Granular activated carbon + Fibrous activated carbon
Heat resistance		40℃
Initial pressure loss		0.03MPa

Stainless steel filter housing

SH series

Feature

- Excellent pressure resistance and corrosion resistance
- Adjustable by guide tool according to cartridge size
- Various packages from S size 1 unit to T size 12 units

(Housing code

Qu	antity code	Length code						
1	1 unit	1	For S size					
3	3 unit	2	For D size					
6	6 unit	3	For T size					
12	12 unit	•	,					


Specification

Maximum pressure	0.7MPa							
Material	Body: SUS304, O ring: Silicone							
Applicable cartridge shape code	Type 1 (Double open end)							
Applicable cartridge length code	S,D,T							

Dimension

M	lodel		Dime	nsion ((mm)				Joint			Cart	ridge	Operating
Model		Α	В	С	D	Е	N1 Inlet	N2 Outlet	N3 Drain	N4 Air vent	N5 Pressure monitor	Size	Quantity	weight (kg)
SH-D1-1C		102	414	62	127	141	Rc3/4	Rc3/4	G1/4	G1/4	-	S	1	6
SH-D1-2C		102	664	62	127	141	Rc3/4	Rc3/4	G1/4	G1/4	-	D	1	9
SH-D1-3C		102	914	62	127	141	Rc1	Rc1	G1/4	G1/4	-	Т	1	13
SH-D1-1C	with stand	102	493	141	127	141	Rc3/4	Rc3/4	G1/4	G1/4	-	S	1	8
SH-D1-2C	with stand	102	743	141	127	141	Rc3/4	Rc3/4	G1/4	G1/4	-	D	1	11
SH-D1-3C	with stand	102	993	141	127	141	Rc1	Rc1	G1/4	G1/4	-	Т	1	15
SH3-2C		165	986	745	318	245	40A	40A	Rc3/8	Rc3/8	Rc3/8	D	3	29
SH3-3C		165	1231	745	318	245	40A	40A	Rc3/8	Rc3/8	Rc3/8	Т	3	35
SH6-2C		267	1082	816	364	275	50A	50A	Rc3/8	Rc3/8	Rc3/8	D	6	61
SH6-3C		267	1332	816	364	275	50A	50A	Rc3/8	Rc3/8	Rc3/8	Т	6	77
SH12-2B		403	1233	-	400	410	65A	65A	Rc3/8	Rc3/8	Rc3/8	D	12	175
SH12-3B		403	1480	-	570	410	65A	65A	Rc3/8	Rc3/8	Rc3/8	Т	12	220

Drawing

Stainless steel high flow and large scale filter housing

SK series

Feature

- The housing is for high flow process. Line up from T size 10 to 64 units.
- Adjustable by guide tool according to cartridge size.

Housing code

Quantity code

Quantity of attachable T size filter cartridge

Specification

Maximum pressure		0.7MPa	
Design temperature		40°C(at 0.7MPa)	
Material	Body	SUS304	
Material	O ring	EPDM	
Applicable ca	rtridge shape code	Type1 (double open end)	
Applicable ca	rtridge length code	T (The connection of S 3units are usable)	

Model	Dimensi	on (mm)	Product weight	Operating				Joint			Cartridge
Model	Total height	Tower diameter	(kg)	weight (kg)	N1 Inlet	N2 Outlet	N3 Drain	N4 Air vent	N5 Pressure monitor	N6 Water opening	Quantity
SK10-3	1150	319	55	140	50A	50A	Rc3/8	Rc3/8	Rc3/8	Rc1/2	10
SK12-3	1150	319	55	140	50A	50A	Rc3/8	Rc3/8	Rc3/8	Rc1/2	12
SK16-3	1585	400	130	275	65A	65A	Rc1/2	Rc3/8	Rc3/8	Rc1/2	16
SK20-3	1595	450	135	325	80A	80A	Rc1/2	Rc3/8	Rc3/8	Rc1/2	20
SK24-3	1700	500	160	430	80A	80A	Rc1	Rc3/4	Rc3/8	Rc1/2	24
SK30-3	1710	550	180	480	100A	100A	Rc1	Rc3/4	Rc3/8	Rc1/2	30
SK40-3	1720	600	220	620	100A	100A	Rc1	Rc3/4	Rc3/8	Rc1/2	40
SK50-3	1740	650	230	700	125A	125A	Rc1	Rc3/4	Rc3/8	Rc1/2	50
SK60-3	1790	750	310	900	125A	125A	Rc1	Rc3/4	Rc3/8	Rc1/2	60
SK64-3	1790	750	320	910	125A	125A	Rc1	Rc3/4	Rc3/8	Rc1/2	64

Sanitary stainless steel filter housing

SH-S series

Feature

- Adopt SUS316L excellent in pressure and corrosion resistance.
- Highly precise treatment of outer and inner surfaces.
- 3 kinds of shapes (V shape, T shape, L shape) to minimize remaining liquids.
- Optional valves for air vent are available.

Housing code

Le	ngth code	S	nape code
1	S size	V	V type
2	D size	Т	T type
3	T size	L	L type

Specification

Maximum usa	able pressure	0.5MPa
Maximum usab	le temperature	121℃
Material	Body	SUS316L
Material	Gasket	Silicone
Surface	Outer	#400
finishing	Inner	#400+electro polishing
Applicable shape		Type 2 (single open end/ O ring-226/with fin)
Applicable cartri	dge length code	S, D, T

Shape	Length	Dimension (mm)		Dimension (mm)		Operating weight			Interface	
code	code	Total height	Tower diameter	(kg)	Inlet	Outlet	Body clamp band	air bleed clamp band		
	1	441.5		Approx.7						
V	2	693.5		Approx.10	15	15 15	4 S	1.55		
	3	945.5		Approx.13						
	1	406.5		Approx.7						
Т	2	658.5	φ101.6	Approx.10						
	3	910.5		Approx.13						
	1	407.5		Approx.7						
L	2	659.0		Approx.10						
	3	911.0		Approx.13						

High functioning polypropylene filter housing

PH-A series

Feature

- All parts made by polypropylene (except O-rings).
- The ring-nut method prevents problems arising from seals.
- The adopted parts are suitable to FDA.

Specification

Maxim	um pressure	0.5MPa		
Maximum temperature		40℃		
Material Body		Polypropylene		
Material	O ring	Silicone		
Applicable ca	rtridge shape code	Type1(Double open end) Type3(Single open end/O ring-222/Without fin)		
Applicable ca	rtridge length code	S		

Housing code

laint anda	D		Operating weight	Joint				
Joint code	Total height	Tower diameter	(kg)	IN/OUT	Air vent	Water draining		
200	364	4122	φ132 Ap	Approx.4	Rc3/4	G1/4	G1/4	
250	304	Ψ132	Арргох.4	RC1	01/4	01/4		

Multi-purpose plastic filter housing

PF-Ⅲ series

Feature

Specification

Light weight to handle easily.

■ Transparent blue vessels enables us to see impurities inside easily.

Maximu	um pressure	0.5MPa
Maximum	n temperature	40℃
	Сар	ABS
Material	Container	AS
	V packing	NBR
Applicable ca	rtridge shape code	Type1(Double open end)
Applicable ca	rtridge length code	S
Operatin	g weight (kg)	Approx.3

Product	Dimensi	on (mm)	Joint
Hoduct	Total height	Tower diameter	IN/OUT
PF-Ⅲ	320	φ115	Rc1/2

Multi-purpose plastic filter housing

PF-VI series

Feature

- Transparent vessels enables us to see impurities inside easily
- 2 units of air vents are installed in IN/Out (2 locations)
- By exchanging vessels, it is flexibly applicable to Double/Triple

Charifian	tion.
Specifica	

	Maximum pressure	0.5MPa
	Maximum temperature	40℃
	Сар	ABS
	Container	Transparent AS
Material	Adapter, O ring	EPDM(Standard)
	Air vent, Under-drain plug	ABS
	Seal plate	ABS(T), POM(T3)
Appl	Type1(Double open end)	
Appli	cable cartridge length code	S, D, T

	Product Size(mm) Join		Join Dimension (mm)		Operating	Operating Joint weight					
	Floduct	Size(IIIII)	code	Total height	Tower diameter	(kg)	IN/OUT	Plug(O ring)	Air vent plug (with O ring)		
	PF-VI S: 250 D: 500	S: 250	15	345		A	15A(Rc1/2)				
		S: 250		345	φ121	φ121	' '	Approx.3		G1/4	M10
		D: 500	20	595			Approx.5	20A(Rc3/4)	01/4	70110	
		T: 750		845		Approx.8					

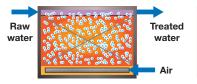
Application

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic Chemical/Material

Waste water for various cleaning purposes, processing, laboratory/environmental purposes

Bio-membrane waste water treatment system

General


Space saving and easy operation with its simple structure

Aerobic reaction tank filled with ORGANO's own carries.

ORGANO provides the most suitable carries and system to each waste water.

Fixed bed type

Fix carries in tank

Flowed bed type

Let carries flow in tank

Feature

Save space

High process capability and 20% installation space only comparing with activated sludge process.

Easy maintenance

Surface monitoring of sedimentation tank or such maintenances as sludge drawing, etc are not necessary. It can stand load fluctuation with effective microorganism sticking to carrier's surfaces strongly.

Reduce sludge generation

Many of protozoans/metazoans are generated and cause food-chain

The system can retain a number of micro bacterias and generate selfdigestion smoothly.

Membrane bioreactor system

OF-AS series

General

Feature

Compact waster water treatment equipment with stability and advanced quality of treated water

Save space

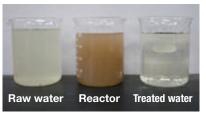
High-load operation and sedimentation tanks are not necessary. Space saving.

Compact size

Such components as tank and pump are integrated in a compact skid.

Contribute to the reduction of installation space as well as local installation time.

High quality of treated water


The most suitable for complying with discharge regulation or water recycling.

Reduce maintenance work

Sedimentation not required, there is no sludge carry-over or bulking generation.

Appearance sampling of Raw water - Treated water

Specification

Model	OF-AS-S1-030	OF-AS-S1-050	OF-AS-S1-100
Processing flow rate(m³/day)	30	50	100
Dimension(mm)	W4000×D3500×H3200	W6000×D3500×H3200	W6500×D4500×H3600
Product weight(t)	5.3	6.7	11.0
Operating weight(t)	19.0	28.0	47.0
Power	AC200V Three phase		
Power capacity	15	20	32
Quality of treated water	BOD below 5mg/L Turbidity below 0.2 (NTU)		
Quality of raw water	Standard BOD: 100-300mg/ℓ Temperature: 15-30°C pH: 5 - 9 Impurities: No fiber, vinyl materials are included Impurities: No fiber, vinyl materials are included		

Flowed carrier anaerobic treatment system

General

Feature

Anaerobic treatment system with highest speed and most stable processing

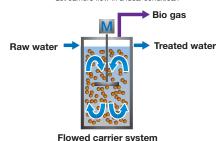
High speed process

The flow carrier system achieves high contact efficiency between micro-bacteria and waste water. High-performance flowed carriers retain high concentration of anaerobic bacterias. So, the system has realized higher speed processing comparing with conventional systems.

Stable and safe process

Flowed carriers retain micro bacteria stably. Unlike the Granule method, micro bacterias are not emitted outside the system.

No clogging problems


As the inside of tank circulates continuously, there are no worries of clogging problems unlike the Granule method.

Applicable to various kinds of waste water


Due to flowed carrier's capability of retaining bacterias, the system can support anaerobic treatment with a wider range of waste water.

Low concentrated waste water (CODcr 1,000mg/L approximately) or waste water containing oil, which cannot be treated by conventional ways, can be applied to.

ORGANO's own flowed carrier system Let carriers flow in a ideal conditioan

Comparison of process speed

Flocculation/Pressure floatation treatment

High-speed flocculator

General

Application

Feature

High speed process LV3-6m/h! Space saving and low cost

Electronics Automotive/Machinery Food/Beverage Medical/Cosmetic Chemical/Material

Waste water for various cleaning purposes, processing, laboratory/environmental purposes

Principle of coagulative precipitation

Upward flow evenly generated in tank (by constant rotation of distribution tubes and blocking plate) creates sludge blankets stably.

High speed process of sedimentation LV 3-6m/h -

Higher LV is realized than conventional system approx. LV 1m/h.

Smaller sized tank and low cost of the construction -

Due to downsizing of precipitation tank, low cost is realized

High quality of treated water

Sludge blanket is able to catch micro flock.

Stable operation

The height of sludge blanket interface is continuously monitored.

High rate dissolved air floatation system

H-D-AF

General

Application

Feature

High speed process, space saving, and low cost model

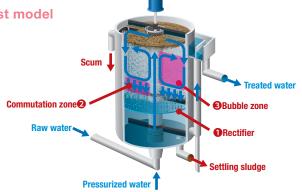
Electronics Automotive/Machinery Food/Beverage

Medical/Cosmetic Chemical/Material

Process water for pre-treatment, waste water for various cleaning purposes, laboratory/environmental purposes

Principle of High speed

- Rectifier(1) forms a commutation zone(2) of even flow speed
- Simultaneously, a bubble zone (3) (where micro bubbles are fulfilled) is generated and accelerates the tie between flock and bubbles.
- A fully utilized tank enables the high-speed solid-liquid separation.


Great reduction of installation space

The size is approx. 25% of conventional pressure floatation system.

Stable quality of treated water

Sufficient treatment capability for water containing oil, humin substance, and algae, etc.

Stable treatment quality even in winter when water temperature is low and the quality is tend to be worse.

The flow in "High rate dissolved air floatation system".

Low cost

Downsizing of floatation tank contributes the cost reduction.

Applicable to a wider range of flow rate

Treated water amount per tower: 8-160m³/h (\oplus 1,000-3200mm).

R&D Center

ORGANO conducts development and research to master water according to the progress of the industry.

ORGANO is engaged in a wide range of technology such as pure/ultrapure water, water treatment, waste water treatment, environmental cleanup/impact reduction, advanced separation, purification, analyzing monitoring.

4-4-1 Nishi-Onuma, Minami-ku, Sagamihara, Kanagawa Prefecture, 252-0332,Japan

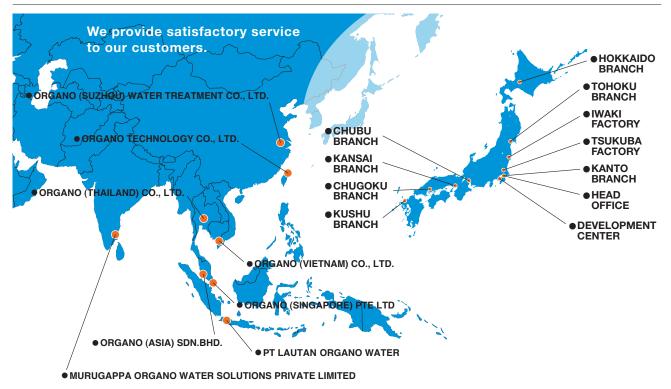
Iwaki Factory

It is a state-of-the-art manufacturing factory of water treatment equipment. Manufacturing the standardized units to constitute a large scale water treatment plant, the factory contributes to enhancing product quality and short construction time. It is also remarkable that there are clean room assembly facilities for semiconductor and pharmaceutical customers.

1-66 Yoshima Kogyodanchi, Iwaki City, Fukushima Prefecture, 970-1144,

Tsukuba Factory

As a national water treatment plant engineering manufacturer, it is only ORGANO who owns a refining plant exclusive to ion exchange


This plant is dedicated to regeneration and conditioning of ion exchange resin which is a key material to pure/ultrapure water production system. We are proud that it is a World No.1 state-of-the-art plant.

2-3 Midorigahara (Tsukuba TechnoPark Toyosato), Tsukuba City, Ibaraki Prefecture 300-2646,Japan

Global network spread around the world

ORGANO CORPORATION

Head office Functional Product Business Division 2-8, Shinsuna 1-Chome, Koto-Ku, Tokyo, 136-8631, Japan TEL.+81-(0)3-5635-5193 FAX.+81-(0)3-3699-7220

Website https://www.organo.co.jp/products/

**Please contact us when you export the products in the catalog as they may need an export license of Japan's Ministry of Economy, Trade and Industry based on an export trade law

Our sales offices deliver warm service to our customers

 $\ensuremath{\mathrm{\%}}\xspace$ Please understand we may revise the contents of the catalog without announcement.

